
RASPBERRY PI 4B
DEVELOPMENT KIT

TEL: 1-800-361-5237
PI4B-DEV-KIT

S.no Name of the Component Part number Quantity

1 Servo Motor SG90 SG90 1

2 16x2 LCD Module with I2C LCD-MOD-13 1

3 Humidity Sensor Module SENS-DHT11-BB 1

4 Power Supply Module PSM-297 1

5 Stepper Motor with Driver MOT-28BYJ48 1

6 Active Buzzer BUZ-120 1

7 Breadboard ABRA-12-LC 1

8 1 Digit RED 7- Segment Display S-5101AS 1

9 Tilt Sensor Module SENS-39 1

10 Ultrasonic Sensor Module HC-SR04 1

11 4x3 Keypad 419-ADA 1

12 PIR Sensor SENS-PIR 1

13 Sound Sensor Module SENS-42 1

14 Small Button Switch PBS-315BK 5

15 Photoresistor PHOTO-300 2

16 NPN Transistor S8050 5

17 Potentiometer 3386-P-1-103T 1

18 Resistors (10,100,220,330,1K,2K,5K,10K,100K,1M) 100

19 10K Thermistor 334-103 1

20 5mm LED (Red, Green, Yellow, Blue, White) 25

21 RGB LED LED-5RGB-4-CC 1

22 Motor Driver L293D 1

23 Shift Register 74HC595 1

24 Analog to Digital Converter IC- ADC0832 ADC0832 1

25 Capacitor (10uf 50V) 10R50 2

26 Capacitor (100uf 50V) 100R50 2

27 Ceramic Capacitor(22pf) CD220 5

28 Ceramic Capacitor (104) CD104 5

29 DC Motor FAN MOT-PROP-L 1

30 DC Motor MOT-500 1

31 LED Bar Graph MV57164 1

32 PI-cobbler PI-COBBLER 1

33 PI- cobbler-C PI-COBBLER-C 1

34 Female to Male JW-MF-20-6 1

35 Male to Male JW-MM-20-6 1

36 Plastic Case CB-13 1

37 Resistor card 1

38 Manual 1

Contents
1 Introduction to Raspberry PI ... 3

2 Set up .. 3

3 Installation .. 3

4 Programming... 5

5 Getting started .. 6

6 Projects ... 7

6.1 Blinking LED ... 7

6.2 Controlling brightness of LED .. 7

6.3 Door buzzer using push button ... 8

6.4 Tilt Switch (SENS 39) ... 9

6.5 Photoresistor (Photo-300) .. 10

6.6 RGB Led ... 11

6.7 LED bar graph .. 12

6.8 Thermistor (334-103) .. 13

6.9 Shift register(74HC595) ... 16

6.10 7-segment display (S-5101AS) .. 17

6.11 I2C LCD (LCD MOD-13) .. 18

6.12 Motor Driver (LD93D) ... 20

6.13 Distance Sensor (HC-SR04) .. 20

6.14 4x3 Keypad (419-ADA) .. 21

6.15 PIR sensor (SENS-PIR) .. 23

6.16 Humidity sensor (SENS-DHT11-BB) ... 23

6.17 Servo (SG-90) .. 24

6.18 Stepper motor with driver (MOT-28BYJ-48) ... 25

1 Introduction to Raspberry PI
The Raspberry Pi is a tiny computer about the size of a deck of cards. It uses what's called a system on a chip, which

integrates the CPU and GPU in a single integrated circuit, with the RAM, USB ports, and other components soldered onto

the board for an all-in-one package. We should use the SD card to install Operating system in raspberry pie.

• USB ports — these are used to connect a mouse

and keyboard. You can also connect other

components, such as a USB drive.

• SD card slot — you can slot the SD card in here.

This is where the operating system software and

your files are stored.

• Ethernet port — this is used to connect

Raspberry Pi to a network with a cable. Raspberry Pi

can also connect to a network via wireless LAN.

• Audio jack — you can connect headphones or

speakers here.

• HDMI port — this is where you connect the

monitor (or projector) that you are using to display

the output from the Raspberry Pi. If your monitor

has speakers, you can also use them to hear sound.

• Micro USB power connector — this is where you

connect a power supply. You should always do this last, after you have connected all your other

components.

• GPIO ports — these allow you to connect electronic components such as LEDs and buttons to Raspberry

Pi.

2 Set up
• SD card: We recommend a minimum of 8GB class 4.

• Display and connectivity cable: Any HDMI/DVI monitor or TV should work as a display for the Pi. For best results,

use a display with HDMI input; other types of connection for older devices are also available.

• Keyboard and mouse: Any standard USB keyboard and mouse will work with your Raspberry Pi. Wireless

keyboards and mice will work if already paired.

• Power supply: The Pi is powered by a USB Micro [models pre 4B] or USB Type-C [model 4B] power supply (like

most standard mobile phone chargers). You need a good-quality power supply that can supply at least 3A at 5V

for the Model 4B, 2A at 5V for the Model 3B and 3B+, or 700mA at 5V for the earlier, lower-powered Pi models.

Low-current (~700mA) power supplies will work for basic usage but are likely to cause the Pi to reboot if it draws

too much power. They are not suitable for use with the Pi 3 or 4.

Note: To save time, you can get a card that is pre-installed with NOOBS or Raspberry Pi OS, although setting up your

own card is easy.

3 Installation
Beginners should start with NOOBS, which gives the user a choice of operating system from the standard distributions.

You can download NOOBS from https://www.raspberrypi.org/downloads/noobs/

https://www.raspberrypi.org/
https://en.wikipedia.org/wiki/System_on_a_chip
https://www.raspberrypi.org/documentation/installation/noobs.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/noobs.md
https://www.raspberrypi.org/downloads/noobs/

1. Download the zip file.

2. Unzip the file.

3. Insert SD card to your computer.

4. Make sure you format the SD card using SD

card formatter software. Format it even if it’s a

new card.

5. Copy all the contents of the unzipped file to

the SD card.

6. Connect the mouse and keyboard to the USB

slots on raspberry pi.

7. Remove the SD card once files are copied

and now insert the SD card to the raspberry pi.

8. Power up the raspberry pi.

9. Connect the HDMI cable to HDMI0 in raspberry pi and then connect to the HDMI port on the monitor.

10. Upon your Raspberry Pi starting up, if you

want to access additional operating systems,

you can connect to a Wi-Fi network by clicking

the “Wi-Fi Networks” button (1).

Or if you want to download an operating

system over the network (internet), it will

show an ethernet cable icon (3). You can

select whatever operating system that is

present over network.

But here in this manual we have followed

the SD card icon as shown by 2 which

represents OS available locally i.e. on SD

card. To install the operating system on SD

card, select Raspbian and click on install as

shown in below picture. A confirm window

pops up click on Yes.

11. The installation is time consuming.

12. Enter the location details.

13. Set up your password.

14. Select the Wi-Fi Network. If you don’t have ignore it. But make sure

your raspberry is connected to either Ethernet or Wi-Fi so that we can

install certain libraries that we do not have.

4 Programming
You can install python3 if it is not in the OS. Use Commands as given below on terminal

sudo apt-get update

sudo apt-get install python3

To install the GPIO library type the following commands on terminal

sudo apt-get update

sudo apt-get install rpi.gpio

We can use Thonny if we do not have python 3. Thonny: The easiest introduction to Python is through Thonny, a Python3

development environment. Here we use Thonny. Open Thonny, type your code and save your code as .py file. Make the

circuit connection for raspberry pi and then Run.

5 Getting started

Pin Numbering Declaration

After you've included the RPi.GPIO module, the next step is to determine which one of the two pin-numbering

schemes you want to use:

GPIO.BOARD -- This type of pin numbering refers to the number of the pin in the plug, i.e, the numbers printed on the

board, for example, ,,, that can be seen in the pinout picture above. The advantage of this type of numbering is,

it will not change even though the version of board changes.

GPIO.BCM -- Broadcom chip-specific pin numbers. These pin numbers follow the lower-level numbering system defined

by the Raspberry Pi's Broadcom-chip brain. For example GPIO 2(SDA) is refereed to as PIN number2 and not 3 as in

GPIO.BOARD.

Setting a Pin Mode

If you've used Arduino, you're probably familiar with the fact that you have to declare a "pin mode" before you can use it

as either an input or output. To set a pin mode, use the setup(pin, GPIO.IN or GPIO.OUT) function. So, if you want to set

pin 22 as an output, for example, write:

GPIO.setup(22, GPIO.OUT)

Outputs

Digital Output

To write a pin high or low, use the GPIO.output(pin, GPIO.LOW or GPIO.HIGH) function. For example, if you want to set

pin 22 low, write

GPIO.output(22, GPIO.LOW)

Delays

To have delay in your code first make sure you have included time library.

include time

time.sleep(seconds) is used to set delays.

time.sleep(0.5) # delay for 500 milliseconds.

6 Projects

6.1 Blinking LED

Write the code in Thonny and save the file with .py extension.

Connect the circuit and Run the code.

import RPi.GPIO as GPIO # Import Raspberry Pi GPIO library

from time import sleep # Import the sleep function from the time module

GPIO.setmode(GPIO.BOARD) # Use physical pin numbering

GPIO.setup(8, GPIO.OUT, initial=GPIO.LOW) # Pin 8 is set as output pin and initial value

set to low

while True: # Run forever

GPIO.output(8, GPIO.HIGH) # Turn on LED

sleep(2) # Sleep for 2 seconds

GPIO.output(8, GPIO.LOW) # Turn off

sleep(2) # Sleep for 2 seconds

Always copy paste the code as it is do not make any changes to tab space in code lines

6.2 Controlling brightness of LED
In this project we shall control the brightness of the LED using the PWMLED library.

Install gpiozero library.

sudo apt-get update

sudo apt-get install gpiozer0

from gpiozero import PWMLED
from time import sleep

LED=PWMLED(17)
while True:

 LED.value=0

 sleep(1)

 LED.value=0.3 #increase to one third of full brightness

 sleep(1)

 LED.value=0.6

 sleep(1)

 LED.value=1# full brightness

 sleep(1)
 # You can also toggle the LED by using LED.toggle()

6.3 Door buzzer using push button
An active buzzer will generate a tone using an internal oscillator, so all that is needed is a DC voltage which we now

provide through one of the gpio pins on Raspberry Pi. Components: BUZ-120, Push button, wires

#!/usr/bin/env python

import RPi.GPIO as GPIO

import time

buzzer_pin = 16

switch = 18

def setup():

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(buzzer_pin, GPIO.OUT)

 GPIO.output(buzzer_pin, GPIO.LOW) # Set buzzer_pin in off state

 GPIO.setup(switch, GPIO.IN,pull_up_down=GPIO.PUD_UP) # Set pin 18 as input, and pull

up to high level(3.3V)

def loop():

 while True:

 if GPIO.input(switch) == GPIO.LOW:

 print ("buzzer_pin on")

 GPIO.output(buzzer_pin, GPIO.HIGH) # buzzer on

 else:

 print ("buzzer_pin off")

 GPIO.output(buzzer_pin, GPIO.LOW) # buzzer off

def destroy():

 GPIO.output(buzzer_pin, GPIO.LOW) # buzzer off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will

be executed.

 destroy()

6.4 Tilt Switch (SENS 39)

Tilt switch is a switch which opens and closes an

electrical circuit when it is tilted at certain angles. After

connecting the circuit if the breadboard is tilted to

certain angle the LED will glow. They are small,

inexpensive, low-power, and easy-to-use.

#!/usr/bin/env python

import RPi.GPIO as GPIO

import time

led_pin = 8

tilt_switch = 10

def setup():

 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(led_pin, GPIO.OUT)

 GPIO.output(led_pin, GPIO.LOW) # Set led_pin in off state

 GPIO.setup(tilt_switch, GPIO.IN,pull_up_down=GPIO.PUD_UP) # Set pin 10 as input, and

pull up to high level(3.3V)

def loop():

 while True:

 if GPIO.input(tilt_switch) == GPIO.LOW:

 print ("LED switched on")

 GPIO.output(led_pin, GPIO.HIGH) # led switched on

 else:

 print ("LED switched off")

 GPIO.output(led_pin, GPIO.LOW) # led switched off

def destroy():

 GPIO.output(led_pin, GPIO.LOW) # led off

 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will

be executed.

 destroy()

6.5 Photoresistor (Photo-300)

Unlike some other devices the Raspberry Pi does not

have any analogue inputs. All of its GPIO pins are digital.

They can output high and low levels or read high and

low levels. This is great for sensors that provide a digital

input to the Pi but not so great if you want to use

analogue sensors. We use a basic “RC” charging circuit

in which Resistor is in series with a Capacitor. When a

voltage is applied across these components the voltage

across the capacitor rises. The time it takes for the

voltage to reach 63% of the maximum is equal to the

resistance multiplied by the capacitance. When using a

Light Dependent resistor this time will be proportional

to the light level. This time is called the time constant i.e.

t = RC where t is time, R is resistance and C is capacitance

Since all are digital pins we should charge the capacitor such that it reaches the voltage great enough to be recognized as

logic HIGH by one of the digital pins.

•Set the GPIO pin as an output and set it Low to discharge the capacitor to 0V.

•Set the GPIO pin as an input. This starts a flow of current through the resistors

and through the capacitor to ground. The voltage across the capacitor starts to rise.

The time it takes is proportional to the resistance of the LDR.

•Monitor the GPIO pin and read its value. Increment a counter while we wait.

•At some point the capacitor voltage will increase enough to be considered as

a High by the GPIO pin (approx 2v). The time taken is proportional to the light level

seen by the LDR.

NOTE: in this project we have used GPIO PIN numbers and not the physical pins i.e. sensor pin is GPIO-15 which is

nothing but physical pin number 10

from gpiozero import LightSensor, LED

sensor = LightSensor(15)

led = LED(14)

def loop():

 while True:

 sensor.wait_for_light()

 print("there's light")

 sensor.wait_for_dark()

 print("It's dark")

 sensor.when_dark = led.on

 sensor.when_light = led.off

 pause()

if __name__ == "__main__":

 try:

 loop()

 except:

 print("led")

6.6 RGB Led
In this example we will learn how to vary the color of RGB. Varying the PWM values causes the change in color. Pulse

Width Modulation (or PWM) is a technique for controlling power. We also use it here to control the brightness of each of

the LEDs. Using PWM the amount of power delivered to a device can be controlled. Duty Cycle and Frequency concepts

are used in PWM to control brightness of RGB LED. Duty cycle indicates the duration for which the pulse is HIGH over it

period. In lay man terms this duty cycle is a value in percent of ON status compared to OFF status. From the figure below

we can see the formula to calculate the duty cycle. It is measured in percentage and it indicates the voltage between OFF

and ON levels (usually 0V and 5V).

from gpiozero import RGBLED

from time import sleep

led = RGBLED(red=14, green=15, blue=18)

def loop():

 while True:

 led.red = 1 # full red

 sleep(1)

 led.red = 0.5 # half red

 sleep(1)

 led.color = (0, 1, 0) # full green

 sleep(1)

 led.color = (1, 0, 1) # magenta

 sleep(1)

 led.color = (1, 1, 0) # yellow

 sleep(1)

 led.color = (0, 1, 1) # cyan

 sleep(1)

 led.color = (1, 1, 1) # white

 sleep(1)

 led.color = (0, 0, 0) # off

 sleep(1)

if __name__ == "__main__":

 try:

 loop()

 except:

 print("RGB")

6.7 LED bar graph
LED Bar Graph is an LED array, which is used to connect with electronic circuit or microcontroller. It’s easy to connect

LED bar graph. One side of the LED bar graph consists of anode of LED and the other side cathode. The LED bar graph is

used as a Battery level Indicator, Audio equipment and Industrial Control panels.

import RPi.GPIO as GPIO
import time
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)

leds = [1,5,12,16,20,21,26,19,13,6]

for led in leds:

 GPIO.setup(led, GPIO.OUT,initial=0)
def setup():
 while True:
 for led in leds:

 GPIO.output(led, 1) # switched ON

 time.sleep(0.5)# half a second delay

 GPIO.output(led, 0) # switched OFF
def destroy():
 GPIO.cleanup()

if __name__ == "__main__":
 try:
 setup()
 except KeyboardInterrupt:
 destroy()

6.8 Thermistor (334-103)

A thermistor is a type of resistor whose resistance is dependent on temperature. Thermistors are of two opposite types:

• With NTC thermistors,

resistance decreases as temperature

rises. An NTC is commonly used as a

temperature sensor.

• With PTC thermistors,

resistance increases as temperature

rises.

In this experiment we create a voltage divider

between thermistor and

10kΩ resistor and

perform the calculation.

• Vo = Vs * (R0 /

(Rt + R0

• Rt = R0 * ((Vs /

Vo) - 1)

• 1/T = A + B*ln(R) + C*(ln(R))^3

Components: 10K thermistor, 10kΩ resistor,

ADC0832.

The following steps are followed for ADC IC

• bring CS pin low to signal beginning of conversion

• start pulsing clock
• output 1 on the digital i/o pin

• output a bit for the mux mode (single-ended or differential)
• output a bit for the channel; the interpretation of this depends on the selected
mode.
• this concludes the setup phase; the digital i/o pin is now set to input mode
• on each clock cycle, read a bit from the digital pin; repeat for 8 periods and
accumulate the value. The first time data is passed MSB first.
• then the adc passes the same data LSB first. Read in a similar manner to the
previous part - pulse 8 clock cycles and read a bit from the device on each.

Make sure to you have the Program given below saved as ADC0832.py in the folder where you save your python files. This

ADC0832 will be imported to read analog values from thermistor.

This is a program for all ADC Module. It will be imported when we should read analog

values.

convert analog signal to digital signal.

import RPi.GPIO as GPIO

import time

ADC_CS = 11

ADC_CLK = 12

ADC_DIO = 13

using default pins for backwards compatibility

def setup(cs=11,clk=12,dio=13):

 global ADC_CS, ADC_CLK, ADC_DIO

 ADC_CS=cs

 ADC_CLK=clk

 ADC_DIO=dio

 GPIO.setwarnings(False)

 GPIO.setmode(GPIO.BOARD) # Number GPIOs by its physical location

 GPIO.setup(ADC_CS, GPIO.OUT) # Set pins' mode is output

 GPIO.setup(ADC_CLK, GPIO.OUT) # Set pins' mode is output

def destroy():

 GPIO.cleanup()

using channel = 0 as default for backwards compatibility

def getResult(channel=0): # Get ADC result, input channal

 GPIO.setup(ADC_DIO, GPIO.OUT)

 GPIO.output(ADC_CS, 0)

 GPIO.output(ADC_CLK, 0)

 GPIO.output(ADC_DIO, 1); time.sleep(0.000002)

 GPIO.output(ADC_CLK, 1); time.sleep(0.000002)

 GPIO.output(ADC_CLK, 0)

 GPIO.output(ADC_DIO, 1); time.sleep(0.000002)

 GPIO.output(ADC_CLK, 1); time.sleep(0.000002)

 GPIO.output(ADC_CLK, 0)

 GPIO.output(ADC_DIO, channel); time.sleep(0.000002)

 GPIO.output(ADC_CLK, 1)

 GPIO.output(ADC_DIO, 1); time.sleep(0.000002)

 GPIO.output(ADC_CLK, 0)

 GPIO.output(ADC_DIO, 1); time.sleep(0.000002)

 dat1 = 0

 for i in range(0, 8):

 GPIO.output(ADC_CLK, 1); time.sleep(0.000002)

 GPIO.output(ADC_CLK, 0); time.sleep(0.000002)

 GPIO.setup(ADC_DIO, GPIO.IN)

 dat1 = dat1 << 1 | GPIO.input(ADC_DIO)

 dat2 = 0

 for i in range(0, 8):

 dat2 = dat2 | GPIO.input(ADC_DIO) << i

 GPIO.output(ADC_CLK, 1); time.sleep(0.000002)

 GPIO.output(ADC_CLK, 0); time.sleep(0.000002)

 GPIO.output(ADC_CS, 1)

 GPIO.setup(ADC_DIO, GPIO.OUT)

 if dat1 == dat2:

 return dat1

 else:

 return 0

def getResult1():

 return getResult(1)

def loop():

 while True:

 res0 = getResult(0)

 res1 = getResult(1)

 time.sleep(0.4)

if __name__ == '__main__': # Program start from here

 setup()

 try:

 loop()

 except KeyboardInterrupt:

 destroy()

The program for calculating temperature using thermistor is given below.

Program to calculate temperature

import ADC0832

import time

import math

#ADC_CS = 11,ADC_CLK = 12,ADC_DIO = 13

def init():

 ADC0832.setup()

def loop():

 while True:

 analogVal = ADC0832.getResult()

 Vr = 5 * float(analogVal) / 255

 Rt = 10000 * Vr / (5 - Vr)

 temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+52)))

 temp = temp - 273.15

 print ("temperature = %d C" % temp)

 Tf = (temp * 9.0)/ 5.0 + 32.0;

 print ("temperature = %d F" % Tf)

 time.sleep(1)

if __name__ == '__main__':

 init()

 try:

 loop()

 except KeyboardInterrupt:

 ADC0832.destroy()

 print ("The end !")

6.9 Shift register(74HC595)

• GND should be connected to the ground of Raspberry pi.

• VCC is the power supply for 74HC595 shift register which

we connect the 5V pin on the Raspberry Pi.

• SER (Serial Input) pin is used to feed data into the shift

register a bit at a time.

• SRCLK (Shift Register Clock) is the clock for the shift

register. Bits are shifted on the rising edge of the clock.

• RCLK (Register Clock / Latch when logic HIGH, the

contents of Shift Register are copied into the Storage/Latch

Register; which ultimately shows up at the output.

• SRCLR (Shift Register Clear) pin allows us to reset the

entire Shift Register, making all its bits 0, at once. This is a

negative logic pin, we need to set the SRCLR pin LOW for reset.

When reset not required, this pin should be HIGH.

• QA–QH (Output Enable) are the output pins connected

to output like LEDs.

Components: LEDs, 74HC595 IC, wires

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BOARD)

data_pin=8

latch_pin=10

clock_pin=12

GPIO.setwarnings(False)

GPIO.setup(data_pin,GPIO.OUT)

GPIO.setup(latch_pin,GPIO.OUT)

GPIO.setup(clock_pin,GPIO.OUT)

def shift_reg(byte):

 GPIO.output(latch_pin,0)

 for y in range (8):

 GPIO.output(data_pin,(byte<<y)& 0x80) # write (push) the binary bits to data pin

one by one

 GPIO.output(clock_pin,1)

 time.sleep(0.1)

 GPIO.output(clock_pin,0)

 time.sleep(0.1)

 GPIO.output(latch_pin,1)

 time.sleep(0.1)

def loop():

 while 1:

 for x in range(255):

 shift_reg(x)

def destroy():

 GPIO.cleanup()

if __name__ == '__main__': # Program start from here

 try:

 loop()

 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()

will be executed.

 destroy()

6.10 7-segment display (S-5101AS)
Interfacing seven segment display to Raspberry pi. In the common cathode display, all the cathode connections of the

LED segments connected to ground. The segments are illuminated by applying “HIGH”, or logic “1” signal via a current

limiting resistor to forward bias the Anode terminals. For example, if you want to illuminate segment ‘a’ then pin7 on

Raspberry Pi that is connected to segment ‘a’ is made HIGH

Table for Connections

7 segment gpio pin

a 14

b 15

c 24

d 8

e 7

f 18

g 23

- gnd

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

segments = (14,15,24,8,7,18,23)

#14-a, 15-b,24-c,8-d,7-e,18-f,23-g

for segment in segments:

 GPIO.setup(segment, GPIO.OUT)

 GPIO.output(segment, 0)

num = [[0,0,0,0,0,0,0],

 [1,1,1,1,1,1,0],

 [0,1,1,0,0,0,0],

 [1,1,0,1,1,0,1],

 [1,1,1,1,0,0,1],

 [0,1,1,0,0,1,1],

 [1,0,1,1,0,1,1],

 [1,0,1,1,1,1,1],

 [1,1,1,0,0,0,0],

 [1,1,1,1,1,1,1],

 [1,1,1,1,0,1,1]

]

try:

 while True:

 for digit in range(0,11):

 for loop in range(0,7):

 GPIO.output(segments[loop],

num[digit][loop])

 time.sleep(1)

 for loop in range(0,7):

 GPIO.output(segments[loop],

num[0][loop])

 time.sleep(1)

finally:

GPIO.cleanup()

6.11 I2C LCD (LCD MOD-13)
LCD I2C uses I2C interface, so it has 4 pins NAMELYGND, VCC, SDA (I2C data signal), SCL (I2C clock signal).

Components: I2C LCD, Jumper wires. Note: If the LED does not display characters then try LCD contrast adjust.

We use a library found in Github you can directly download the file from

https://github.com/sunfounder/SunFounder_SensorKit_for_RPi2/tree/master/Python where you download LCD1602 file

and save this module in the location where you have your project files.

If you want to download using command line type the following on command line (or

git clone https://github.com/sunfounder/SunFounder_SensorKit_for_RPi2.git . Now this file will be downloaded. Navigate
the file as given below

SunFounder_sensorkit_for_RPi2.git->Python->LCD1602.py now select the LCD1602.py file and paste this file in the
location where you have saved your python project files. We do this because we need to import this file in our program
that we are going to write.

https://github.com/sunfounder/SunFounder_SensorKit_for_RPi2/tree/master/Python
https://github.com/sunfounder/SunFounder_SensorKit_for_RPi2

Now we have to activate I2C the following commands are used

• sudo apt-get install -y python-smbus

• sudo apt-get install -y i2c-tools

• sudo raspi-config

Now we should Select Interfacing Options ->Advanced options -> I2C. Now

enable the ARM I2C interface by selecting Yes.

#!/usr/bin/env python
import LCD1602
import time

def setup():

 LCD1602.init(0x27, 1)

 LCD1602.write(0, 0, 'Rasberry Pi Kit')

 LCD1602.write(1, 1, 'Abra Electronics')

 time.sleep(2)
def destroy():
 GPIO.cleanup()

if __name__ == "__main__":
 try:
 setup()
 except KeyboardInterrupt:
 destroy()

Connect the SDA pin to SDA pin of Raspberry pi and

similarly SCL to SCL pin of Raspberry pi.

6.12 Motor Driver (L293D)
L293D Motor driver can run two motors at a time on either direction. In this experiment we use L293D to run a single DC

motor. It works on the principle of H-bridge which allows the voltage to be flown in either direction. The Device is a

monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels

and drive inductive loads (such as relays solenoids, DC and stepping motors) and switching power transistors. To simplify

use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the

logic, allowing operation at a lower voltage and internal clamp diodes are included. This device is suitable for use in

switching applications at frequencies up to 5 kHz.

Connections: PIN 22 - PIN 9 of IC , PIN 18 - PIN 10 of IC, PIN 16 - PIN 15 of IC

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

input_1=16

input_2=18

enable_1=22

GPIO.setup(input_1,GPIO.OUT)

GPIO.setup(input_2,GPIO.OUT)

GPIO.setup(enable_1,GPIO.OUT)

def setup():

 while 1:

 time.sleep(5)

 print ("FORWARD MOTION")

 GPIO.output(enable_1,GPIO.HIGH)

 GPIO.output(input_1,GPIO.HIGH)

 GPIO.output(input_2,GPIO.LOW)

 time.sleep(5)

 print ("STOP")

 GPIO.output(enable_1,GPIO.LOW)

 time.sleep(1)

 print ("BACKWARD MOTION")

 GPIO.output(enable_1,GPIO.HIGH)

 GPIO.output(input_1,GPIO.LOW)

 GPIO.output(input_2,GPIO.HIGH)

def destroy():

 GPIO.cleanup()

if __name__ == "__main__":

 try:

 setup()

 except KeyboardInterrupt:

 destroy()

6.13 Distance Sensor (HC-SR04)

Ultrasonic Sensor HC-SR04 is a sensor that can measure distance. It emits an ultrasound at 40000 Hz (40kHz) which travels

through the air and if there is an object or obstacle on its path It will bounce back to the module. Using the time taken to

travel and the speed of the sound distance is calculated.

If x is the distance between point A and point

B then 2x will be the distance travelled from A

to B and the B to A. We know that speed of

the ultrasound is about 340 meters per

second.

• Distance = Speed*Time.

• Distance=2x.

• 2x= 340*Time x=340*Time/2

Trig pin to GPIO-24

Echo pin to GPIO 23

from gpiozero import DistanceSensor
from signal import pause
from time import sleep

sensor = DistanceSensor(23, 24)
def loop():
 while True:
 print("Distance to nearest object is", sensor.distance, "meters")

 sleep(1)

if __name__ == "__main__":
 try:
 loop()
 except KeyboardInterrupt:
 print("Interrupted")

6.14 4x3 Keypad (419-ADA)
 4x3 keypad has 4 rows and 3 columns. If no key has been

pressed, then all columns will remain HIGH. Pressing a

button shorts one of the row lines to one of the column lines,

allowing current to flow between them. For example, when

key ‘2’ is pressed, column 2 and row 1 are shorted so column

2 and row 1 are LOW.

Components: 4x3 Keypad,

Jumper wires

import RPi.GPIO as GPIO
import time

R1 = 17 #BCM NUMBERING

R2 = 18

R3 = 27

R4 = 22

C1 = 23

C2 = 24

C3 = 25

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)

GPIO.setup(R1, GPIO.OUT)
GPIO.setup(R2, GPIO.OUT)
GPIO.setup(R3, GPIO.OUT)
GPIO.setup(R4, GPIO.OUT)

GPIO.setup(C1, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #pull down the gpio pin
GPIO.setup(C2, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(C3, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

def readLine(line, characters):
GPIO.output(line, GPIO.HIGH)

if(GPIO.input(C1) == 1):

 print(characters[0])

if(GPIO.input(C2) == 1):

 print(characters[1])

if(GPIO.input(C3) == 1):

 print(characters[2])
GPIO.output(line, GPIO.LOW)

try:
while True:

 readLine(R1, [“1”,”2”,”3”])
 readLine(R2, [“4”,”5”,”6”])
 readLine(R3, [“7”,”8”,”9”])
 readLine(R4, [“*”,”0”,”#”])

 time.sleep(0.2)
except KeyboardInterrupt:
print(“End”)

6.15 PIR sensor (SENS-PIR)
A passive infrared sensor (PIR sensor) is an

electronic sensor that measures infrared (IR) light radiating

from objects in its field of view. They are most often used

in PIR-based motion detectors. PIR sensors are commonly

used in security alarms and automatic lighting applications.

Once the circuit is built and uploaded into Raspberry Pi try

moving objects in front of PIR sensor which causes LED to

glow, output can also be seen on serial monitor.

Components: SENS-PI

import RPi.GPIO as GPIO
from time import sleep
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)

GPIO.setup(4, GPIO.IN)

GPIO.setup(14, GPIO.OUT) # to connect to led

def setup():

 while 1:

 if GPIO.input(4):

 GPIO.output(14, GPIO.HIGH)#glow led
 print ("motion detected")

 sleep(.5)

 GPIO.output(14, GPIO.LOW)
def destroy():
 GPIO.cleanup()
if __name__ == "__main__":
 try:
 setup()
 except KeyboardInterrupt:
 destroy()

6.16 Humidity sensor (SENS-DHT11-BB)
In this project we interface a humidity sensor to measure temperature and humidity. DHT11 consist of a humidity sensing

component, a NTC temperature sensor (or thermistor) and an IC. It has a humidity sensing component which has two

electrodes with moisture holding substrate between them. When the humidity changes, the conductivity of the substrate

changes or the resistance between these electrodes’ changes. This change in resistance is measured and processed by the

IC which makes it data to be read by a microcontroller.

Install dht11 library using

 pip3 install dht11

import RPi.GPIO as GPIO
import dht11
from time import sleep
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)

dht_sensor=dht11.DHT11(pin=4)

def setup():

 while 1:
 result=dht_sensor.read()

 sleep(2)
 if result.is_valid():
 print ("Temperature is %-3.2f C"%result.temperature)
 print ("Humidity is %-3.2f %%"%result.humidity)

def destroy():
 GPIO.cleanup()
if __name__ == "__main__":
 try:
 setup()
 except KeyboardInterrupt:
 destroy()

6.17 Servo (SG-90)
A servo motor is an electrical device which can rotate an object with

high precision. If you want to rotate an object at a specific angle, we use

servo motor. Servo motor is controlled by PWM (Pulse with

Modulation). In this project we can connect small servo motors directly

to a Raspberry pi to control the shaft position very precisely. Raspberry

Pi sends PWM signal to the servo which then rotates by an angle

depending upon the pulse width.

• If PWM's width = WIDTH_MIN, the servo motor rotates to 0°.
• If PWM's width = WIDTH_MAX, the servo motor rotates to 180°.

import RPi.GPIO as GPIO
from time import sleep
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)

GPIO.setup(15,GPIO.OUT)

servo_motor=GPIO.PWM(15,500) # SET THE FREQUENCY TO 500HZ

servo_motor.start(50) #SET DUTY CYCLE TO 50%
def setup():

 while 1:

 for duty_cycle in range(0,100,5):
 servo_motor.ChangeDutyCycle(duty_cycle)

 sleep(1)

 for duty_cycle in range(100,0,-5):
 servo_motor.ChangeDutyCycle(duty_cycle)

 sleep(1)
def destroy():
 GPIO.cleanup()
if __name__ == "__main__":
 try:
 setup()
 except KeyboardInterrupt:
 destroy()

6.18 Stepper motor with driver (MOT-28BYJ-48)
The 28BYJ-48 stepper motor is a stepper motor, which converts electrical pulses into discrete mechanical rotation. The

28BYJ-48 stepper motor consumes high current and hence, we will need to use a driver IC ULN2003 to control the motor

with Raspberry pi. ULN2003 is a 7-channel inverter circuit.

 The following codes define the step commands.

8 Step : A – AB – B – BC – C – CD – D – DA

4 Step : AB – BC – CD – DA (Usual application)

Step Hexadecimal
value

IN4 IN3 IN2 IN1

A 01H 0 0 0 1

AB 03H 0 0 1 1

B 02H 0 0 1 0

BC 06H 0 1 1 0

C 04H 0 1 0 0

CD 0CH 1 1 0 0

D 08H 1 0 0 0

DA 09H 1 0 0 1

import RPi.GPIO as GPIO
from time import sleep

INPUT_PINS = (22,23,24,25)

rotation_per_minute =10

stepsPerRevolution = 1042

speed = (60/rotation_per_minute)/stepsPerRevolution
def setup():
 GPIO.setwarnings(False)
 GPIO.setmode(GPIO.BCM)
 for i in INPUT_PINS:
 GPIO.setup(i, GPIO.OUT)
def clock_wise():

 for j in range(4):

 for i in range(4):

 GPIO.output(INPUT_PINS[i],0x99>>j & (0x08>>i))
 sleep(speed)
def anti_clock_wise():

 for j in range(4):

 for i in range(4):

 GPIO.output(INPUT_PINS[i],0x99<<j & (0x80>>i))
 sleep(speed)
def destroy():
 GPIO.cleanup()
if __name__ == "__main__":
 try:
 setup()

 while 1:

 for x in range(200):
 clock_wise()

 for x in range(200):
 anti_clock_wise()
 except KeyboardInterrupt:
 destroy()

	PI4B-DEV-KIT(MANUAL-COVER)
	Raspberry pi (1)

