
ARDUINO MINIMALIST
KIT

TEL: 1-800-361-5237

ARD-MIN-KIT

 S.no Name of the Component Part number Quantity

1 Active Buzzer BUZ-120 1

2 Breadboard ABRA-6 1

3 Tilt Sensor Module SENS-39 1

4 10K Thermistor 334-103 1

5 Small Button Switch PBS-315BK 5

6 Photoresistor PHOTO-300 2

7 NPN Transistor S8050 5

8 Servo Motor SG90 1

9 Water Level Sensor Module SENS-78 1

10 1N4007 Diode 1N4007 1

11 Resistors (220,330,1K,10K,100K,1M) 60

12 5mm LED (Red, Green, Yellow, Blue, White) 25 (5 each)

13 RGB LED LED-5RGB-4-CC 1

14 Potentiometer P10K-MIN-PC 2

15 Female to Male JW-MF-20-6 1

16 Male to Male JW-MM-20-6 1

17 Resistor card 1

18 Manual 1

 Contents
1 Introduction to Arduino .. 3

1.1 Installing Arduino .. 3

1.2 Getting started with IDE .. 4

1.3 Adding Libraries .. 5

1.4 Code Basics.. 6

2 Projects ... 7

2.1 LED blink .. 7

2.2 LED Trailing effect ... 8

2.3 Traffic Light ... 9

2.4 Controlling LED by Buttons ... 10

2.5 Doorbell using active buzzer ... 11

2.6 Transistor as switch ... 12

2.7 Tilt Switch (SENS-39) ... 13

2.8 Photoresistor (Photo-300) .. 14

2.9 RGB LED ... 14

2.10 Thermistor (334-103) .. 16

2.11 Water level sensor (SENS-78).. 17

2.12 Servo Motor (SG90) .. 17

2.13 Controlling an LED by potentiometer ... 18

1 Introduction to Arduino
Arduino Uno is a microcontroller board based on the ATmega328P.

1.1 Installing Arduino
Step 1: Visit https://www.arduino.cc/. In software section select Downloads.

Step 2: Depending on the operating system in your computer select Arduino IDE accordingly. If windows, click on the

installer instead of ZIP file as it is easy to install.

A0-A5: Analog data such as sensor

photoresistor are read by these pins

and Analog to digital converter (ADC)

will convert the data into digital.

https://www.arduino.cc/

Step 3: Click I agree Step 4: Click Next

Step 5: Select the path where the Arduino IDE should be installed. By default it is C drive but you always have the

option to browse and select your own path.

1.2 Getting started with IDE
Open the IDE and connect your Arduino board to your computer. Before writing your code make sure you have selected

the board. Tools->Board->Arduino AVR boards-> Arduino/Genuino Uno

Now select the port for the Arduino board. In this example its Com 5 (Arduino/Genuino Uno).

Now write your code and Compile and uploads the code to the board.

To compile your code click on the tick mark button shown in the figure

To upload the code select Sketch-> upload

1.3 Adding Libraries
The Arduino environment can be extended using libraries, just like most programming platforms. Libraries provide extra

functionality for use in sketches, e.g. working with hardware or manipulating data. To use a library in a sketch, select it

from Sketch > Import Library.

How to Install a Library

• Using the Library Manager: To install a new library into your Arduino IDE you can use the Library Manager. Open

the IDE and click to the "Sketch" menu and then Include Library > Manage Libraries. The search for the required

library you are looking for and Click install.

 x

• Importing a .zip Library: Libraries are often distributed as a ZIP file or folder. The name of the folder is the name

of the library. Inside the folder will be a .cpp file, a .h file and often a keywords.txt file, examples folder, and

other files required by the library. Starting with version 1.0.5, you can install 3rd party libraries in the IDE. Do not

unzip the downloaded library, leave it as is. In the Arduino IDE, navigate to Sketch > Include Library > Add .ZIP

Library. You will be prompted to select the library you would like to add. Navigate to the .zip file's location and

open it.

1.4 Code Basics
Certain basic functions that makes coding in Arduino easier are listed below.

Digital I/O for digital pins

• digitalRead() : Reads the value from a specified digital pin, either HIGH or LOW.
Syntax: digitalRead(pin)

•
digitalWrite() : Write a HIGH or a LOW value to a digital pin. If the pin has been configured as
an OUTPUT with pinMode(), its voltage will be set to the corresponding value: 5V (or 3.3V on 3.3V boards)
for HIGH, 0V (ground) for LOW. If the pin is configured as an INPUT, digitalWrite() will enable (HIGH)
or disable (LOW) the internal pullup on the input pin.
Syntax: digitalWrite (pin,value)

• pinMode() : Configures the specified pin to behave either as an input or an output.
 Syntax: pinMode(pin, mode).
 pin: the Arduino pin number to set the mode of. Mode is either INPUT or OUTPUT

Analog I/O for analog pins

• analogRead() : Reads the value from the specified analog pin
 Syntax: analogRead(pin)
Example: digitalread(10); //reads the value either LOW or HIGH in pin number 10

• analogWrite() : Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying brightnesses
or drive a motor at various speeds.

int ledPin = 12; // LED connected to digital pin 13

int inPin = 7; // pushbutton connected to digital pin 7

int val = 0; // variable to store the read value

void setup() {

 pinMode(ledPin, OUTPUT); // sets the digital pin 12 as output

 pinMode(inPin, INPUT); // sets the digital pin 7 as input

 pinMode(13, OUTPUT); // sets the digital pin 13 as output

}

void loop() {

 val = digitalRead(inPin); // read the input pin

 digitalWrite(ledPin, val); // sets the LED to the button's value

 digitalWrite(13, HIGH); // sets the digital pin 13 on

 delay(1000); // waits for a second

 digitalWrite(13, LOW); // sets the digital pin 13 off

 delay(1000); // waits for a second

}

https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/
https://www.arduino.cc/reference/en/language/functions/digital-io/pinmode/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
http://arduino.cc/en/Tutorial/PWM

 Syntax: analogWrite(pin, value)

2 Projects

2.1 LED blink
Brief: Through this project we shall learn how to turn an LED on and off. If the pin has been configured as

an OUTPUT with pinMode(), its voltage will be set to the corresponding value for digitalWrite: 5V for HIGH, 0V

(ground) for LOW.

Components: LED, RESISTOR 220Ω

220Ω

int ledPin = 9; // LED connected to digital pin 9

int analogPin = 3; // potentiometer connected to analog

pin 3

int val = 0; // variable to store the read value

void setup() {

 pinMode(ledPin, OUTPUT); // sets the pin as output

}

void loop() {

 val = analogRead(analogPin); // read the input pin

 analogWrite(ledPin, val / 4); // analogRead values go

from 0 to 1023, analogWrite values from 0 to 255

}

2.2 LED Trailing effect
Brief: Through this project we shall learn how to turn on the LED one by one using Arduino. We here use for loop to

activate the LEDs connected to pin 2, 3,4,5,6,7 one after the other with a delay 500 i.e. half a second.

Components: LED, 220Ω resistors

const int ledPin = 9; //the Pin number of the on-board LED

void setup ()

{

pinMode (ledPin, OUTPUT); //initialize the digital pin 9 as an output

}

void loop () //the loop routine runs repeatedly forever

{

digitalWrite(ledPin,HIGH); //turn the LED on

delay(500); //wait for half a second

digitalWrite(ledPin,LOW); //turn the LED off

delay(500); //wait for half a second

}

2.3 Traffic Light
Brief: Traffic light controller can be designed by giving definite amount of delay between switching of traffic light

colors. In the code each light is turned on for one second while the other two colors are off and the cycle repeats

with a delay if 1 second.

Components Required: LED (red, green, yellow), Resistor 220Ω

int timer=500;
void setup() {
 // initialize pin 2 to pin 7 as output pins
for (int number = 2; number < 8; number++) {
pinMode(number, OUTPUT);
 }
}
void loop() {
 // loop from the pin 2 to pin 7
for (int number = 2; number < 8; number++) {
digitalWrite(number, HIGH); // turn on the pin
delay(timer);
digitalWrite(number, LOW); // turn off the pin
 } // loop from pin 7 to pin 2
for (int number = 7; number >= 2; number--) {
digitalWrite(number, HIGH); // turn on the pin
delay(timer);
digitalWrite(number, LOW); // turn off the pin
 }
}

2.4 Controlling LED by Buttons
Brief: We use push button to ON and OFF LED. When button is pressed the

circuit is closed which makes the LED to turn ON. In the code given below

we read the value on the pin 12, if the button is pressed then the value at

pin 12 will be HIGH then the LED is made to glow by setting the led pin to

HIGH.

Components Required: Button switch, LED, Resistor 220Ω, 10KΩ,

breadboard.

Push button works on the following principle

▪ Button not pressed = disconnected circuit
▪ Button pressed = connected circuit

const int greenlight= 8; // assign greenlight to pin 8
const int yellowlight= 9; // assign greenlight to pin 9
const int redlight= 10; // assign greenlight to pin 10
void setup() {
pinMode (greenlight, OUTPUT);
pinMode (yellowlight, OUTPUT);
pinMode (redlight, OUTPUT);
}
void loop(){
digitalWrite (greenlight, HIGH); //turns greenlight on
digitalWrite (yellowlight, LOW); //turns yellowlight off
digitalWrite (redlight, LOW); //turns redlight off
delay(1000);
digitalWrite (greenlight, LOW); //turns greenlight off
digitalWrite (yellowlight, HIGH); //turns yellowlight on
digitalWrite (redlight, LOW); //turns redlight off
delay(1000);
digitalWrite (greenlight, LOW); //turns greenlight off
digitalWrite (yellowlight, LOW); //turns yellowlight off
digitalWrite (redlight, HIGH); //turns redlight on
delay(1000);
}

2.5 Doorbell using active buzzer
Brief: An active buzzer will generate a tone using an internal oscillator, so all that is needed is a DC voltage which we

now provide through one of the digital pins on Arduino. Components: BUZ-120, Resistor 220Ω, Push button

//LED is switched on and off using push button
// Written by ABRA ELECTRONICS
const int buttonPin = 12; //the button connected to pin 12
const int ledPin = 13; //the led connected to pin13
int buttonState = 0; // variable for reading the pushbutton status
void setup()
{
pinMode(buttonPin, INPUT); //initialize thebuttonPin as input
pinMode(ledPin, OUTPUT); //initialize the led pin as output
}
void loop ()
{ //read the state of the button value
buttonState = digitalRead (buttonPin);
 if (buttonState == HIGH) // check if button is high (pressed)

{
digitalWrite (ledPin, HIGH); //turn the led on

}
else

{
digitalWrite (ledPin, LOW); //turn the led off

}
}

2.6 Transistor as switch
The most common uses for transistors in an electronic circuit is as a switch. Transistor conducts current across the

collector-emitter path only when a voltage is applied to the base. When no base voltage is present, the switch is off.

When base voltage is present, the switch is on. Basically Base-Emitter junction acts as a diode which conducts electricity

only if bias voltage is applied.

//Doorbell
//Turns buzzer on and off using the button.
// Written by ABRA ELECTRONICS
const int buttonPin = 2; //the button connect to pin2
const int buzzerPin = 8; //the led connect to pin8
int buttonState = 0; // variable for reading the pushbutton status
void setup() {
pinMode(buttonPin, INPUT); //initialize the button pin as input
pinMode(buzzerPin, OUTPUT); //initialize the buzzer pin as output

}
void loop() {

 //read the state of the button value
 buttonState = digitalRead(buttonPin);

if (buttonState == HIGH) { //and check if the button is pressed if it is, the state will be HIGH
for (int i = 0; i < 25; i++) {
digitalWrite(buzzerPin, HIGH); //Activate the buzzer
delay(500); //wait for half second
digitalWrite(buzzerPin, LOW); //Deactivate the buzzer
delay(500); //wait for half second

 }
 }
}

2.7 Tilt Switch (SENS-39)
Brief: Tilt switch is a switch which opens and closes an electrical

circuit when it is tilted at certain angles. After connecting the

circuit if the breadboard is tilted to certain angle the LED will

glow. They are small, inexpensive, low-power, and easy-to-use.

Components: SENS-39

const int transistor_base = 3;

void setup()
{
 pinMode (transistor_base, OUTPUT);
}
void loop()
{
 digitalWrite (transistor_base, HIGH);// on the
switch
 delay(2000);
 digitalWrite (transistor_base, LOW);//off the
switch
 delay(2000);
}

// Tilt switch
// Written by ABRA ELECTRONICS
int led_pin = 13; // Built in LED connected to pin

13

int tilt_switch = 3; // tilt switch connected to pin 3

int value;

void setup()

{

 pinMode(led_pin, OUTPUT);

 pinMode(tilt_switch, INPUT);

}

void loop()

{

value = digitalRead(tilt_switch); //Read the tilt

value

 if(value == HIGH)

 {

 digitalWrite(led_pin, HIGH);

 }

 else

 {

 digitalWrite(led_pin, LOW);

 }

}

2.8 Photoresistor (Photo-300)
Brief: A photoresistor or photocell is a light-controlled variable resistor. It works on the principle of photoconductivity.

The resistance of a photoresistor decreases with increasing incident light intensity. When resistance decreases current

flow through it.

2.9 RGB LED
Brief: In this example we will learn how to vary the color of RGB led using Arduino. Varying the PWM values causes the

change in color. Pulse Width Modulation (or PWM) is a technique

for controlling power. We also use it here to control the

brightness of each of the LEDs. Using PWM the amount of power

delivered to a device can be controlled. Duty Cycle and Frequency

concepts are used in PWM to control brightness of RGB LED. Duty

cycle indicates the duration for which the pulse is HIGH over it

period. In lay man terms this duty cycle is a value in percent of ON

status compared to OFF status. From the figure below we can see

the formula to calculate the duty cycle. It is measured in

percentage and it indicates the voltage between OFF and ON levels

(usually 0V and 5V).

Components: Button switch (4), Red LED, Yellow LED, Green LED,
Resistors 220Ω (3), 10KΩ (4),Breadboard

//Use a photoresistor to turn on an LED in the dark

const int photocell = A0; // Photoresistor at Arduino analog

pin A0

const int ledPin=9; // Led pin at Arduino pin 9

int digitalvalue; // to store digitalvalue from photoresistor

(0-1023)

void setup(){

 pinMode(ledPin, OUTPUT); // Set ledPin - 9 pin as an

output

 pinMode(photocell, INPUT);

}

void loop(){

 digitalvalue = analogRead(photocell);

 if (digitalvalue > 30){

 digitalWrite(ledPin, LOW); //Turn led off if there is

enough light in room

 }

 else{

 digitalWrite(ledPin, HIGH); //Turn led on if it is dark

 }

}

//RGB Led
// Written by ABRA ELECTRONICS
int blue_pin = 2;

int green_pin = 3;

int red_pin= 4;

void setup() {

 pinMode(red_pin, OUTPUT);

 pinMode(green_pin, OUTPUT);

 pinMode(blue_pin, OUTPUT);

}

void loop() {

 RGB_CODE(255, 0, 0); // Red colour

 delay(500); // delay by half a second

 RGB_CODE(0, 255, 0); // Green colour

 delay(500);

 RGB_CODE(0, 0, 255); // Blue colour

 delay(500);

RGB_CODE(255, 255, 0); // Yellow colour

 delay(500);

 RGB_CODE(255, 255, 255); // White colour

 delay(500);

RGB_CODE(255, 255, 125); // Raspberry colour

 delay(500);

 RGB_CODE(0, 255, 255); // Cyan colour

 delay(500);

 RGB_CODE(255, 0, 255); // Magenta colour

 delay(500);

}

void RGB_CODE(int red_code, int green_code,

int blue_code)

{ // function to read the pin values of RGB

 analogWrite(red_pin, red_code);

 analogWrite(green_pin, green_code);

 analogWrite(blue_pin, blue_code);

}

2.10 Thermistor (334-103)
Brief: A thermistor is a type of resistor whose resistance is dependent on temperature. Thermistors are of two opposite
types:

• With NTC thermistors, resistance decreases as temperature rises. An NTC is commonly used as a temperature
sensor.

• With PTC thermistors, resistance increases as temperature rises.
In this experiment we create a voltage divider between thermistor and 10kΩ resistor and perform the calculation.

• Vo = Vs * (R0 / (Rt + R0
• Rt = R0 * ((Vs / Vo) - 1)
• 1/T = A + B*ln(R) + C*(ln(R))^3

Components: 10K thermistor, 10kΩ resistor.

#include <math.h>
int thermistor = A0;
int Vo;
float R1 = 10000; / / resistor value (R1)
float logR2, R2, T, Tc, Tf;
float A = 1.009249522e-03, B = 2.378405444e-04, C =
2.019202697e-07; / / Value of constants

void setup() {
Serial.begin(9600);// set baud rate for serial
communication
}
// calculations
void loop() {

 Vo = analogRead(thermistor);
 R2 = R1 * (1023.0 / (float)Vo - 1.0);
 logR2 = log(R2);
 T = (1.0 / (A + B*logR2 + C*logR2*logR2*logR2));
 Tc = T - 273.15; //Kelvin to celcius conversion
 Tf = (Tc * 9.0)/ 5.0 + 32.0; //celcius to Fahrenheit

 Serial.print("Temperature measured: ");
 Serial.print(Tf);
 Serial.print(" Fahrenheit; ");
 Serial.print(Tc);
 Serial.println(" Celcius");
 delay(500);
}

2.11 Water level sensor (SENS-78)
Brief: Water level sensor work based on variable

resistance of the series of exposed parallel

conductors (just like a potentiometer) whose

resistance change according to the water level.

The resistance is inversely proportional to the

height of the water.

Once the connections are made insert the sensor

into water and you can notice the level of water

on serial monitor.

Components: SENS-78, Jumper wires.

2.12 Servo Motor (SG90)
Brief: A servo motor is an electrical device which can rotate an object with high precision. If you want to rotate an object

at a specific angle, we use servo motor. Servo motor is controlled by PWM (Pulse with Modulation). In this project we can

connect small servo motors directly to an Arduino to control the shaft position very precisely. Arduino sends PWM signal

to the servo which then rotates by an angle depending upon the pulse width.

Components: Servo motor

#define sensor_switch 7

#define sensor_input A0
// Value for storing water level
int depth = 0;

void setup() {
 Serial.begin(9600);
//set pin 7 as the switch
 pinMode(sensor_switch, OUTPUT);
//switch off sensor
 digitalWrite(sensor_switch, LOW);
}
void loop() {
 int water_level = Sensor_level();
 Serial.print("Water water_level is ");
 Serial.println(water_level);
 delay(100);
}
int Sensor_level() {
 digitalWrite(sensor_switch, HIGH); // Turn the sensor ON
 delay(10);
 depth = analogRead(sensor_input); // Read the analog value form sensor
 digitalWrite(sensor_switch, LOW); // Turn the sensor OFF
 return depth; // send depth of water water_level
}

2.13 Controlling an LED by potentiometer
Brief: Brightness of the LED is controlled using potentiometer by changing the value of the resistance.

 Components: Breadboard, 220Ω resistor, LED.

#include <Servo.h> // Include the Servo library
int ser_pin = 4; // Servo pin connected to pin 4
Servo ser_obj; // instantiate servo object
int i=0;
void setup() {
 ser_obj.attach(ser_pin);
}
void loop(){
 while(ser_pin=HIGH){
 for (i = 0; i <= 360; i++) { //anti clockwise
 ser_obj.write(i);
 delay(10);
 }
 for (i = 360; i>= 0; i--) { //clockwise
 ser_obj.write(i);
 delay(10);
 }
 }
}

// Controlling an LED by potentiometer

int Analoginput=A0; //Analog pin A0 receives input controlled by potentiometer.

int out1=9; //Pin 9 is output to which LED is connected.

void setup()

{

pinMode(out1, OUTPUT); //Pin 9 is output

}

void loop()

{

int recievedinput=analogRead(Analoginput); //Reading the voltage out by potentiometer

int ledbrightness=recievedinput/4; //Dividing by 4 to bring it in range of 0 – 255

analogWrite(out1, ledbrightness);

}

	ARD-MIN-KIT(MANUAL-COVER)
	Arduino_minimalistic

