ARDUINO MINIMALIST KIT

S.no	Name of the Component	Part number	Quantity
1	Active Buzzer	BUZ-120	1
2	Breadboard	ABRA-6	1
3	Tilt Sensor Module	SENS-39	1
4	10K Thermistor	334-103	1
5	Small Button Switch	PBS-315BK	5
6	Photoresistor	PHOTO-300	2
7	NPN Transistor	S8050	5
8	Servo Motor	SG90	1
9	Water Level Sensor Module	SENS-78	1
10	1N4007 Diode	1N4007	1
11	Resistors (220,330,1K,10K,100K,1M)		60
12	5mm LED (Red, Green, Yellow, Blue, White)		25 (5 each)
13	RGB LED	LED-5RGB-4-CC	1
14	Potentiometer	P10K-MIN-PC	2
15	Female to Male	JW-MF-20-6	1
16	Male to Male	JW-MM-20-6	1
17	Resistor card		1
18	Manual		1

1	Intr	oduction to Arduino	3
	1.1	Installing Arduino	
	1.2	Getting started with IDE4	
	1.3	Adding Libraries	
	1.4	Code Basics	
2	Proj	ects	7
	2.1	LED blink7	
	2.2	LED Trailing effect	
	2.3	Traffic Light9	
	2.4	Controlling LED by Buttons10	
	2.5	Doorbell using active buzzer	
	2.6	Transistor as switch12	
	2.7	Tilt Switch (SENS-39)13	
	2.8	Photoresistor (Photo-300)14	
	2.9	RGB LED14	
	2.10	Thermistor (334-103)16	
	2.11	Water level sensor (SENS-78)17	
	2.12	Servo Motor (SG90)17	
	2.13	Controlling an LED by potentiometer	

Contents

1 Introduction to Arduino

Arduino Uno is a microcontroller board based on the ATmega328P.

A0-A5: Analog data such as sensor photoresistor are read by these pins and Analog to digital converter (ADC) will convert the data into digital.

1.1 Installing Arduino

Step 1: Visit <u>https://www.arduino.cc/</u>. In software section select Downloads.

Step 2: Depending on the operating system in your computer select Arduino IDE accordingly. If windows, click on the installer instead of ZIP file as it is easy to install.

Step 3: Click I agree

Step 4: Click Next

📼 Arduino Setup: License Agreement – 🗆 💌	💿 Arduino Setup: Installation Options — 🗌 🗙
Please review the license agreement before installing Arduino. If you accept all terms of the agreement, dick I Agree.	Check the components you want to install and uncheck the components you don't want to install. Click Next to continue.
GNU LESSER GENERAL PUBLIC LICENSE	
Version 3, 29 June 2007	Select components to install: Install Arduino software
Copyright (C) 2007 Free Software Foundation, Inc. < <u>http://fsf.org/</u> >	✓ Install USB driver ✓ Create Start Menu shortcut
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.	Create Desktop shortcut Associate .ino files
This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.	Space required: 392.7MB
Cance Invulsor: Install System V2:46	Cancel Nullsoft Install System v2,46 < Back Next >

Step 5: Select the path where the Arduino IDE should be installed. By default it is C drive but you always have the option to browse and select your own path.

Setup will install Arduino in the following folder. To install in a different folder, dick Browse and select another folder. Click Install to start the installation.	
Destination Folder	1
	<u>.</u>
Space required: 392.7MB	
Space available: 24.6GB	
Cancel Nullsoft Install System v2,46 < Back Install	

1.2 Getting started with IDE

Open the IDE and connect your Arduino board to your computer. Before writing your code make sure you have selected the board. Tools->Board->Arduino AVR boards-> Arduino/Genuino Uno

File Edit Sketch Too	ols Help				
	Auto Format	Ctrl+T			
sketch_oct02a	Fix Encoding & Reload				
<pre>#define senso</pre>	Manage Libraries	Ctrl+Shift+I			
#define senso	Serial Monitor	Ctrl+Shift+M			
int depth = 0	Serial Plotter	Ctrl+Shift+L			
<pre>void setup()</pre>	WiFi101 / WiFiNINA Firmware Updater				∆ Arduino Yún
Serial.be	Board: "Arduino/Genuino Uno"	3	Boards Manager	•	Arduino/Genuino Uno
pinMode (sen	Port: "COM5 (Arduino/Genuino Uno)"	2	Arduino AVR Boards		Arduino Duemilanove or Diecimila
//switch off	Get Board Info		ESP32 Arduino		Arduino Nano
digitalWrit	Programmer: "AVR ISP"	,	ESP8266 Modules		Arduino/Genuino Mega or Mega 2560
<pre>void loop() {</pre>	Burn Bootloader		SparkFun AVR Boards		Arduino Mega ADK
int water_leve	<u></u>		SparkFun SAMD (32-bits ARM Cortex-M0+) Boards		Arduino Leonardo
Serial.print("	Water water_level is ");	L			Arduino Leonardo ETH

Now select the port for the Arduino board. In this example its Com 5 (Arduino/Genuino Uno).

File Edit Sketch Tool	s Help			
	Auto Format	Ctrl+T		
	Archive Sketch		_	
sketch_oct02a	Fix Encoding & Reload			
#define senso	Manage Libraries	Ctrl+Shift+I		
<pre>#define senso</pre>	Serial Monitor	Ctrl+Shift+M		
int depth = 0	Serial Plotter	Ctrl+Shift+L		
void setup()	WiFi101 / WiFiNINA Firmware Updater			
Serial.be	Board: "Arduino/Genuino Uno"	>		
pinMode (sen	Port: "COM5 (Arduino/Genuino Uno)"	3		Serial ports
//switch off	Get Board Info			COM1
digitalWrit	Des sus as a "AVD ICD"			COM4
<pre> void loop() { </pre>	Burn Bootloader	1	~	COM5 (Arduino/Genuino Uno)
int water_lever	- SCHOOL_ICVCI(),			

Now write your code and Compile and uploads the code to the board.

To compile your code click on the tick mark button shown in the

To upload the code select Sketch-> upload

figure

1.3 Adding Libraries

The Arduino environment can be extended using libraries, just like most programming platforms. Libraries provide extra functionality for use in sketches, e.g. working with hardware or manipulating data. To use a library in a sketch, select it from Sketch > Import Library.

How to Install a Library

 Using the Library Manager: To install a new library into your Arduino IDE you can use the Library Manager. Open the IDE and click to the "Sketch" menu and then *Include Library > Manage Libraries.* The search for the required library you are looking for and Click install.

🥶 Library Manager	×
Type All v Topic All V Filter your search	
Arduino Cloud Provider Examples	^
by Arduino Examples of how to connect various Arduino boards to cloud providers <u>More info</u>	
Arduino Low Power by Arduino Power save primitives features for SAMD and nRF52 32bit boards With this library you can manage the low power states of newer Arduino boards More info	
Version 1.2.1 🗸 Install	
Arduino SigFox for MKRFox1200	
by Arduino Helper library for MKRFox1200 board and ATAB8520E Sigfox module This library allows some high level operations on Sigfox module, to ease integration with existing projects <u>More info</u>	
	×
Close	

Importing a .zip Library: Libraries are often distributed as a ZIP file or folder. The name of the folder is the name of the library. Inside the folder will be a .cpp file, a .h file and often a keywords.txt file, examples folder, and other files required by the library. Starting with version 1.0.5, you can install 3rd party libraries in the IDE. Do not unzip the downloaded library, leave it as is. In the Arduino IDE, navigate to Sketch > Include Library > Add .ZIP Library. You will be prompted to select the library you would like to add. Navigate to the .zip file's location and open it.

1.4 Code Basics

Certain basic functions that makes coding in Arduino easier are listed below.

Digital I/O for digital pins

•

- <u>digitalRead()</u>: Reads the value from a specified digital pin, either HIGH or LOW. Syntax: digitalRead(pin)
 - <u>digitalWrite()</u>: Write a HIGH or a LOW value to a digital pin. If the pin has been configured as an OUTPUT with pinMode(), its voltage will be set to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, OV (ground) for LOW. If the pin is configured as an INPUT, <u>digitalWrite()</u> will enable (HIGH) or disable (LOW) the internal pullup on the input pin. Syntax: digitalWrite (pin,value)
- pinMode(): Configures the specified pin to behave either as an input or an output.
 Syntax: pinMode(pin, mode).
 pin: the Arduino pin number to set the mode of.
 Mode is either INPUT or OUTPUT

```
int ledPin = 12; // LED connected to digital pin 13
int inPin = 7; // pushbutton connected to digital pin 7
int val = 0; // variable to store the read value
void setup() {
    pinMode(ledPin, OUTPUT); // sets the digital pin 12 as output
    pinMode(inPin, INPUT); // sets the digital pin 7 as input
    pinMode(13, OUTPUT); // sets the digital pin 13 as output
}
void loop() {
    val = digitalRead(inPin); // read the input pin
    digitalWrite(ledPin, val); // sets the LED to the button's value
    digitalWrite(13, HIGH); // sets the digital pin 13 on
    delay(1000); // waits for a second
    digitalWrite(13, LOW); // sets the digital pin 13 off
    delay(1000); // waits for a second
}
```

Analog I/O for analog pins

- <u>analogRead()</u>: Reads the value from the specified analog pin
 Syntax: analogRead(pin)
 Example: digitalread(10); //reads the value either LOW or HIGH in pin number 10
- <u>analogWrite()</u>: Writes an analog value (<u>PWM wave</u>) to a pin. Can be used to light a LED at varying brightnesses or drive a motor at various speeds.

```
int ledPin = 9;  // LED connected to digital pin 9
int analogPin = 3;  // potentiometer connected to analog
pin 3
int val = 0;  // variable to store the read value
void setup() {
   pinMode(ledPin, OUTPUT); // sets the pin as output
}
void loop() {
   val = analogRead(analogPin); // read the input pin
   analogWrite(ledPin, val / 4); // analogRead values go
from 0 to 1023, analogWrite values from 0 to 255
}
```

2 Projects

2.1 LED blink

Brief: Through this project we shall learn how to turn an LED on and off. If the pin has been configured as an OUTPUT with pinMode(), its voltage will be set to the corresponding value for digitalWrite: 5V for HIGH, 0V (ground) for LOW.

Components: LED, RESISTOR 220Ω


```
const int ledPin = 9;
                            //the Pin number of the on-board LED
void setup ()
{
pinMode (ledPin, OUTPUT); //initialize the digital pin 9 as an output
}
void loop ()
                //the loop routine runs repeatedly forever
{
digitalWrite(ledPin,HIGH);
                                        //turn the LED on
delay(500);
                        //wait for half a second
digitalWrite(ledPin,LOW);
                                        //turn the LED off
delay(500);
                        //wait for half a second
}
```

2.2 LED Trailing effect

Brief: Through this project we shall learn how to turn on the LED one by one using Arduino. We here use for loop to activate the LEDs connected to pin 2, 3,4,5,6,7 one after the other with a delay 500 i.e. half a second. Components: LED, 220Ω resistors


```
int timer=500;
void setup() {
 // initialize pin 2 to pin 7 as output pins
for (int number = 2; number < 8; number++) {</pre>
pinMode(number, OUTPUT);
}
}
void loop() {
// loop from the pin 2 to pin 7
for (int number = 2; number < 8; number++) {</pre>
digitalWrite(number, HIGH); // turn on the pin
delay(timer);
digitalWrite(number, LOW); // turn off the pin
} // loop from pin 7 to pin 2
for (int number = 7; number >= 2; number--) {
digitalWrite(number, HIGH); // turn on the pin
delay(timer);
digitalWrite(number, LOW); // turn off the pin
}
}
```

2.3 Traffic Light

Brief: Traffic light controller can be designed by giving definite amount of delay between switching of traffic light colors. In the code each light is turned on for one second while the other two colors are off and the cycle repeats with a delay if 1 second.

Components Required: LED (red, green, yellow), Resistor 2200

const int greenlight= 8; // assign greenlight to pin 8
const int yellowlight= 9; // assign greenlight to pin 9
const int redlight= 10; // assign greenlight to pin 10
void setup() {
pinMode (greenlight, OUTPUT);
pinMode (yellowlight, OUTPUT);
pinMode (redlight, OUTPUT):
}
void loop(){
digitalWrite (greenlight, HIGH); //turns greenlight on
digitalWrite (yellowlight, LOW); //turns yellowlight off
digitalWrite (redlight, LOW); //turns redlight off
delay(1000);
digitalWrite (greenlight, LOW); //turns greenlight off
digitalWrite (yellowlight, HIGH); //turns yellowlight on
digitalWrite (redlight, LOW); //turns redlight off
delay(1000);
digitalWrite (greenlight, LOW); //turns greenlight off
digitalWrite (vellowlight, LOW): //turns vellowlight off
digitalWrite (redlight, HIGH); //turns redlight on
delay(1000):
}
J

2.4 Controlling LED by Buttons

Brief: We use push button to ON and OFF LED. When button is pressed the circuit is closed which makes the LED to turn ON. In the code given below we read the value on the pin 12, if the button is pressed then the value at pin 12 will be HIGH then the LED is made to glow by setting the led pin to HIGH.

Components Required: Button switch, LED, Resistor 220 Ω , 10K Ω , breadboard.

Push button works on the following principle

- Button not pressed = disconnected circuit
- Button pressed = connected circuit


```
//LED is switched on and off using push button
// Written by ABRA ELECTRONICS
const int buttonPin = 12; //the button connected to pin 12
const int ledPin = 13; //the led connected to pin13
int buttonState = 0; // variable for reading the pushbutton status
void setup()
{
pinMode(buttonPin, INPUT); //initialize thebuttonPin as input
pinMode(ledPin, OUTPUT); //initialize the led pin as output
}
void loop ()
{ //read the state of the button value
buttonState = digitalRead (buttonPin);
                            // check if button is high (pressed)
if (buttonState == HIGH)
digitalWrite (ledPin, HIGH); //turn the led on
else
digitalWrite (ledPin, LOW); //turn the led off
}
```

2.5 Doorbell using active buzzer

Brief: An **active buzzer** will generate a tone using an internal oscillator, so all that is needed is a DC voltage which we now provide through one of the digital pins on Arduino. Components: BUZ-120, Resistor 220Ω, Push button

//Doorbell
//Turns buzzer on and off using the button.
// Written by ABRA ELECTRONICS
const int buttonPin = 2; //the button connect to pin2
const int buzzerPin = 8; //the led connect to pin8
int buttonState = 0; // variable for reading the pushbutton status
void setup() {
pinMode(buttonPin, INPUT); //initialize the button pin as input
pinMode(buzzerPin, OUTPUT); //initialize the buzzer pin as output
}
void loop() {
//read the state of the button value
buttonState = digitalRead(buttonPin);
if (buttonState == HIGH) { //and check if the button is pressed if it is, the state will be HIGH
for (int i = 0; i < 25; i++) {
digitalWrite(buzzerPin, HIGH); //Activate the buzzer
delay(500); //wait for half second
digitalWrite(buzzerPin, LOW); //Deactivate the buzzer
delay(500); //wait for half second
}
}
}

2.6 Transistor as switch

The most common uses for transistors in an electronic circuit is as a switch. Transistor conducts current across the collector-emitter path only when a voltage is applied to the base. When no base voltage is present, the switch is off. When base voltage is present, the switch is on. Basically Base-Emitter junction acts as a diode which conducts electricity only if bias voltage is applied.


```
const int transistor_base = 3;
void setup()
{
    pinMode (transistor_base, OUTPUT);
}
void loop()
{
    digitalWrite (transistor_base, HIGH);// on the
    switch
    delay(2000);
    digitalWrite (transistor_base, LOW);//off the
    switch
    delay(2000);
}
```


2.7 Tilt Switch (SENS-39)

Brief: Tilt switch is a switch which opens and closes an electrical circuit when it is tilted at certain angles. After connecting the circuit if the breadboard is tilted to certain angle the LED will glow. They are small, inexpensive, low-power, and easy-to-use.

Components: SENS-39


```
// Tilt switch
// Written by ABRA ELECTRONICS
int led_pin = 13; // Built in LED connected to pin
13
int tilt_switch = 3; // tilt switch connected to pin 3
int value;
void setup()
{
        pinMode(led pin, OUTPUT);
        pinMode(tilt_switch, INPUT);
}
void loop()
{
value = digitalRead(tilt_switch); //Read the tilt
value
        if(value == HIGH)
                digitalWrite(led_pin, HIGH);
        }
        else
        {
                digitalWrite(led_pin, LOW);
        }
}
```

2.8 Photoresistor (Photo-300)

Brief: A photoresistor or photocell is a light-controlled variable resistor. It works on the principle of photoconductivity. The resistance of a photoresistor decreases with increasing incident light intensity. When resistance decreases current flow through it.

2.9 RGB LED

Brief: In this example we will learn how to vary the color of RGB led using Arduino. Varying the PWM values causes the

change in color. Pulse Width Modulation (or PWM) is a technique for controlling power. We also use it here to control the brightness of each of the LEDs. Using PWM the amount of power delivered to a device can be controlled. Duty Cycle and Frequency concepts are used in PWM to control brightness of RGB LED. Duty cycle indicates the duration for which the pulse is HIGH over it period. In lay man terms this duty cycle is a value in percent of ON status compared to OFF status. From the figure below we can see the formula to calculate the duty cycle. It is measured in percentage and it indicates the voltage between OFF and ON levels (usually OV and 5V).

Components: Button switch (4), Red LED, Yellow LED, Green LED, Resistors 220Ω (3), $10K\Omega$ (4),Breadboard

//RGB Led // Written by ABRA ELECTRONICS int blue_pin = 2; int green pin = 3; int red_pin= 4; void setup() { pinMode(red pin, OUTPUT); pinMode(green_pin, OUTPUT); pinMode(blue_pin, OUTPUT); } void loop() { RGB_CODE(255, 0, 0); // Red colour delay(500); // delay by half a second RGB_CODE(0, 255, 0); // Green colour delay(500); RGB_CODE(0, 0, 255); // Blue colour delay(500); RGB_CODE(255, 255, 0); // Yellow colour delay(500); RGB CODE(255, 255, 255); // White colour delay(500); RGB_CODE(255, 255, 125); // Raspberry colour delay(500); RGB_CODE(0, 255, 255); // Cyan colour delay(500); RGB CODE(255, 0, 255); // Magenta colour delay(500); } void RGB CODE(int red code, int green code, int blue_code) {// function to read the pin values of RGB analogWrite(red_pin, red_code); analogWrite(green_pin, green_code); analogWrite(blue_pin, blue_code); }

2.10 Thermistor (334-103)

Brief: A thermistor is a type of resistor whose resistance is dependent on temperature. Thermistors are of two opposite types:

- With **NTC** thermistors, resistance *decreases* as temperature rises. An NTC is commonly used as a temperature sensor.
- With **PTC** thermistors, resistance *increases* as temperature rises.

In this experiment we create a voltage divider between thermistor and $10k\Omega$ resistor and perform the calculation.

- Vo = Vs * (R0 / (Rt + R0
- Rt = R0 * ((Vs / Vo) 1)
- 1/T = A + B*ln(R) + C*(ln(R))^3

Components: 10K thermistor, $10k\Omega$ resistor.

2.11 Water level sensor (SENS-78)

Brief: Water level sensor work based on variable resistance of the series of exposed parallel conductors (just like a potentiometer) whose resistance change according to the water level. The resistance is inversely proportional to the height of the water.

Once the connections are made insert the sensor into water and you can notice the level of water on serial monitor.

Components: SENS-78, Jumper wires.


```
#define sensor_switch 7
#define sensor input A0
// Value for storing water level
int depth = 0;
void setup() {
  Serial.begin(9600);
//set pin 7 as the switch
 pinMode(sensor_switch, OUTPUT);
//switch off sensor
 digitalWrite(sensor_switch, LOW);
}
void loop() {
 int water level = Sensor level();
 Serial.print("Water water level is ");
 Serial.println(water level);
 delay(100);
}
int Sensor_level() {
 digitalWrite(sensor switch, HIGH); // Turn the sensor ON
 delay(10);
 depth = analogRead(sensor_input); // Read the analog value form sensor
 digitalWrite(sensor_switch, LOW); // Turn the sensor OFF
                     // send depth of water water level
 return depth;
}
```

2.12 Servo Motor (SG90)

Brief: A **servo motor** is an electrical device which can rotate an object with high precision. If you want to rotate an object at a specific angle, we use servo motor. Servo motor is controlled by PWM (Pulse with Modulation). In this project we can connect small servo motors directly to an Arduino to control the shaft position very precisely. Arduino sends PWM signal to the servo which then rotates by an angle depending upon the pulse width.

Components: Servo motor


```
#include <Servo.h> // Include the Servo library
int ser_pin = 4; // Servo pin connected to pin 4
Servo ser_obj; // instantiate servo object
int i=0;
void setup() {
 ser_obj.attach(ser_pin);
}
void loop(){
  while(ser_pin=HIGH){
 for (i = 0; i <= 360; i++) { //anti clockwise
  ser_obj.write(i);
  delay(10);
 }
 for ( i = 360; i>= 0; i--) { //clockwise
  ser_obj.write(i);
  delay(10);
 }
  }
}
```

2.13 Controlling an LED by potentiometer

Brief: Brightness of the LED is controlled using potentiometer by changing the value of the resistance.

Components: Breadboard, 220Ω resistor, LED.

<pre>// Controlling an LED by potentiometer int Analoginput=A0; //Analog pin A0 receives input controlled by potentiometer. int out1=9; //Pin 9 is output to which LED is connected. void setup()</pre>
{
pinMode(out1, OUTPUT); //Pin 9 is output
}
void loop()
{
int recievedinput=analogRead(Analoginput); //Reading the voltage out by potentiometer
int ledbrightness=recievedinput/4; //Dividing by 4 to bring it in range of 0 – 255 analogWrite(out1, ledbrightness);
}