
 / ESP32 Cam 2WD Camera Robot Car

ESP32 Cam 2WD Camera Robot Car

1. Description

DIY ESP32 Cam 2WD Camera Robot Car provides a nice opportunity for those who
want their own car with monitoring func�on. On the basis of ESP32-CAM module, we
design a camera car with low cost and power but high quality, so it is perfect for
beginners in robot car designing and people who want security to houses or workplaces.

2. Kit List

N.O. PIC NAME QTY

1 ESP32-CAM Development Board 1

2 ESP32-CAM Expansion Board 1

3 DC stepper motor drive board 1

4 Motor 2

https://docs.keyestudio.com/projects/KS5023/en/latest/index.html
https://docs.keyestudio.com/projects/KS5023/en/latest/_downloads/3cc847b5e0625ce1f11692174d3be3bd/esp32_cam_schematic_diagram.pdf

N.O. PIC NAME QTY

5 Wheel 2

6 M3*10MM flat head screw 3

7 M3*30MM round head screw 4

8 M3*8MM round head screw 16

9 M3 nut 7

10 M3*12MM round head screw 1

11 M3*10MM dual pass copper pillar 4

12 M3*25MM dual pass copper pillar 2

 latest

https://docs.keyestudio.com/projects/KS5023/en/latest/_downloads/3cc847b5e0625ce1f11692174d3be3bd/esp32_cam_schematic_diagram.pdf

N.O. PIC NAME QTY

13 Fixed part 2

14 universal wheel 1

15 18650 ba�ery holder
(ba�eries are not included) 1

16 acrylic board 1

17 screwdriver 1

18 antenna 1

19 10P F-F DuPont wire 1

3. ESP32 Cam Module

ESP32-CAM module integrates an ESP32-S chip and a mini camera. It is available for

various IOT applica�ons, including taking high-quality s�ll pictures and videos, being
used as a security camera or a drone, and used in industrial Internet of Things.

It is suitable for low power devices, so it can be powered by 5V or 3.3V. Besides, its
built-in USB serial converter facilitates programming and debugging.

3.1 Features of ESP32-CAM

- With ESP32-S chip, supports WiFi and Bluetooth

- With OV2640 camera and flash

- With TF card slot, supports TF card data storage (up to 4G)

- Supports WiFi video monitoring and WiFi photo uploading

- With mul�ple sleep modes, deep sleep current as low as 6mA

- Takes pin headers as the control interfaces, facilita�ng users’ products

3.2 ESP32-CAM Applications

This module helps us to develop projects with visual func�ons. Here are some typical
applica�ons:

- Smart home appliance image upload

- Wireless monitoring

- Intelligent agriculture

- Wireless QR code

- Face recogni�on

- Security camera

- Long-�me-lapse shoo�ng

- 3D printer surveillance camera

- Doorbell camera

- And so on…

3.3 ESP32-CAM Pin-out

These pins are essen�al when you uploading your codes.

GPIO 1 and GPIO 3 are serial pins. GPIO 0 plays an important role in determining
whether the ESP32-CAM is in download mode. Connect GPIO 0 to GND before
rese�ng the ESP32-CAM download, so then it enters download mode.

The following pins are internally connected to the microSD card reader:

GPIO 14: CLK GPIO 15: CMD GPIO 2: data 0 GPIO 4: data 1 (also connected to on-
board LED) GPIO 12: data 2 GPIO 13: data 3

Therefore, these pins will not be available when enabling SD card reading.

3.4 ESP32-CAM Schematics

Click here to download the PDF of Schema�c Diagram.

https://docs.keyestudio.com/projects/KS5023/en/latest/_downloads/3cc847b5e0625ce1f11692174d3be3bd/esp32_cam_schematic_diagram.pdf

4. ESP32-CAM Adapter Board

4.1 Introduction to Adapter Board

This is a tradi�onal way to download code on ESP32-CAM: connect a serial port module
to the ESP32-CAM board via DuPont wire. It is troublesome. We first connect IO0 to
the GND before downloading, and then disconnect them during running code.

Herein, we adopt ESP32-CAM adapter, which is more convenient. We just need to stack
the ESP32-CAM into the adapter and directly connect to the computer via Type-c USB
cable to download codes, as shown below.

Adapter Board:

The board is equipped with CH340 USB-to-serial converter which is responsible for
data transmission between computer and ESP32-CAM. It also boasts a RESET bu�on, a
BOOT bu�on, a power indicator, and a voltage regulator, which provide sufficient power
support for the ESP32-CAM.

4.2 Adapter Board CH340 USB Driver

Before installing the driver, you need to connect the adapter board to the computer via
a USB cable. The USB driver must be installed otherwise you will not find the port
number of ESP32-CAM when uploading codes.

4.2.1 Windows

Click to download Windows CH340 driver.

Note: A�er downloading, unzip and store it. We recommend download it on desktop so
you can easily find it.

For Windows 10 or higher versions, the driver is built in computer.

Connect the board to your computer, and click Computer–A�ributes–Device Manager.
As shown below, the driver is installed.

If there is a yellow exclama�on mark, you need to install the driver manually.

https://docs.keyestudio.com/projects/KS5023/en/latest/_downloads/07226bc37fd9f0b920a5a83976a0a9e3/Windows.zip

Click to choose “Update drive” to update the driver.

Click “Browse my computer for drivers”.

Enter“Browse…” to find the file “usb_ch341_3.1.2009.06” and tap “Next”.

Close the page a�er installa�on, and then the serial port number appears.

Finally, click Computer–A�ributes–Device Manager:

4.2.2 MAC

Click to download MAC CH340 driver.

Note: A�er downloading, unzip and store it. We recommend download it on desktop so
you can easily find it.

Step 1: Download the driver from the Website and extract the file to the local
installa�on directory.

https://docs.keyestudio.com/projects/KS5023/en/latest/_downloads/b43fb34ee3897551d2e7710505b86489/MAC.zip

Step 2: For details about how to install the driver in pkg format by default, see Step 3. If
OS X 11.0 or later does not support Rose�a, refer to Step 4 to install the dmg driver.

Before installa�on, please forward to “System Preferences”->“Security & Privacy”-
>“General” page, below the �tle “Allow apps downloaded from:” choose the choice 2-
>“Mac App Store and iden�fied developers”, then the driver will work normally.

Step 3: To install the driver in pkg format, tap the driver file → Con�nue→ Install.

Then the installa�on will be successful.

To install the pkg format driver on OS X 11.0 and later: Open “LaunchPad” →
“CH34xVCPDriver” → Install.

When using OS X 10.9 to OS X 10.15, click “Restart” to restart your computer, and
perform the following steps a�er the restart.

Step 4: To install the dmg driver, tap the dmg file and drag “CH34xVCPDriver” to enter
the applica�on folder in the opera�ng system.

Then open “LaunchPad” → “CH34xVCPDriver” → Install.

Then the installa�on will be successful.

When inser�ng the CH340 control board into the USB port, open System Report →

Hardware → USB. On the right is USB Device Tree. If the USB device is working
properly, you will find a device whose “Vendor ID” is [0x1a86].

Open “Terminal” program under Applica�ons-U�li�es folder and type the command “ls
/dev/�y*”.

You should see the “�y.wchusbserialx” where “x” is the assigned device number similar
to Windows COM port assignment.

5. Car Assembly

5.1 Mount Motors

Pay a�en�on to the direc�on of each motor.

5.2 Assemble Wheels and the Car Body

Pay a�en�on to the direc�on of each motor.

5.3 Install Camera Part

Note that the acrylic board is rela�vely thick, so the antenna nut needs to be twisted off

first, as shown below:

5.4 Install the Main Board

5.5 Mount Battery Holder

Pay a�en�on to the direc�on of the ba�ery holder.

5.6 Car Wiring

ESP32-CAM wiring diagram:

ESP32-CAM Motor drive board

GPIO14 IN1

GPIO15 IN2

GPIO13 IN3

GPIO12 IN4

5V 5V

GND GND

Ba�ery holder wiring diagram:

Le� motor wiring diagram:

Motor drive board Le� motor

OUT3 Black wire

OUT4 Red wire

Right motor wiring diagram:

Motor drive board Right motor

OUT1 Black wire

OUT2 Red wire

6. About Arduino IDE

6.1 Introduction to Arduino IDE

Arduino IDE is an integrated development environment dedicated to Arduino which is
an open-source electronics pla�orm based on easy-to-read interface and simplified
programming process, aimed at students without a background in electronics.

Its clear interface, syntax highligh�ng and auto-comple�on func�ons make the
programming process easy and enjoyable. It also offers a wealth of tutorials, sample
codes, and community support to help beginners get started quickly and solve prac�cal
problems.

Importantly, it is published as an open source tool. Therefore, it not only accelerates
users own learning process by u�lizing and referring others’ works, it is also available for
extension experienced programmers to freely access, modify and distribute codes.

In one word, Arduino IDE is easy-to-use for beginners, yet flexible enough for advanced
users to take advantage of as well.

6.2 Download Arduino IDE

6.2.1 For Windows

Arduino official: h�ps://www.arduino.cc/

Enter the website and click SOFTWARE to download the latest Arduino so�ware:

Arduino boasts mul�ple versions such as Widows, mac and Linux(as shown below),
please ensure that the one you download is compa�ble with your computer.

Here, we will take Windows system as an example to introduce how to download and
install it. Two versions are provided for Windows: for installing and for downloading(a
zipped file, no need to install).

https://www.arduino.cc/

Click JUST DOWNLOAD to download the so�ware.

6.2.2 For MAC

Its download method is similar to the Windows.

Follow the prompts to install.

6.2.3 Steps

1.Save the .exe file downloaded from the so�ware page to your hard drive and simply
run the file .

2.Read the License Agreement and agree it.

3.Choose the installa�on op�ons.

4.Choose the install loca�on.

5.Click finish and run Arduino IDE

6.3 Install ESP32 Board

6.3.1 For Windows/MAC (under Stable Network Conditions)

Open Arduino IDE and click “Tools” → “Board”. But we cannot find ESP32, so we need
to install it manually.

Installa�on Steps of the ESP32：

Open Arduino IDE.

Click “File → Preferences”, add the link h�ps://espressif.github.io/arduino-
esp32/package_esp32_index.json in Addi�onal boards manager URLs and click OK.

Select the icon of board manager to open the the board op�ons.

Search for ESP32 in the search box and click version 2.0.12 to install. During
installa�on, keep the network stable. If the installa�on fails, repeat the above steps.

Note that here we choose ESP32 2.0.12. Please be consistent with us to avoid version

incompa�bility.

Click Tools and you will see the ESP32 development board.

6.3.2 For Windows (Fast Installation, Transferable-for-use)

A ESP32 2.0.12 package is provided to directly download. A�er installing Arduino IDE,

click this package to install ESP32 2.0.12 . Click here to download the ESP32 2.0.12
package.

A�er finishing download, close Arduino IDE and run the .exe file to install. A�er that,
you will see the ESP32 on Arduino IDE. Note that this file may be mistaken for a virus,
please feel free to use it.

Click Tools and you will see the ESP32 development board.

6.4 Use Arduino IDE

Click icon，and open Arduino IDE.

https://fs.keyestudio.com/ESP32
https://fs.keyestudio.com/ESP32

1. File - includes new Sketch, open Sketch, open recently used code, open sample
code, close the IDE, save code, preferences, advanced Se�ngs, etc.

2. Edit - includes copy, paste, automa�c forma�ng, font size, etc. (shortcut keys are
recommended).

3. Sketch - includes verify\compile, upload code, import library and so on.
4. Tools - The most important two are development board and port.
5. Help - Views the IDE version and official reference documents.
6. Open Serial Plo�er - displays serial data in a method of line graph
7. Open Serial Monitor - opens the Serial Monitor tool, as a new tab in the console.
8. Verify - compiles your code to your Arduino Board.
9. Verify / Upload - compiles and uploads your code to your Arduino Board.

10. Sketchbook - here you will find all of your sketches locally stored on your computer.
Addi�onally, you can sync with the Arduino Cloud, and also obtain your sketches
from the online environment.

11. Boards Manager - install or remove Arduino Boards .
12. Library Manager - browse through thousands of Arduino libraries or import local

libraries
13. Debugger - test and debug programs in real �me.
14. Search - search for keywords in your code.
15. Code edi�ng area
16. IDE prompt area (Uploading fails or succeeds) & Serial monitor display area

6.5 Upload Code on Arduino IDE

Click Tools → Board:"xxxxxx" → esp32 , scroll the mouse and find AI Thnker ESP2-CAM .

Choose COM port. You may check your port number at Device Manager. If there are
many COM ports, unplug the cable of board to see which port disappears. Then that
one is the port ready to use. If there is no COM port, please check whether driver is
installed.

Herein, our COM port is COM3. Click “Tools” → “Port” → “COM3”.

When the board is connected, both of these places appear its model.

Now let’s upload code.

Here we provide a sample code that prints “Hello Keyestudio!” once per second in the
serial monitor.

Copy and paste the following code to Arduino IDE.

Click to compile and upload code. Two prompts will appear a�er upload is

successful:

A�er that, click to show serial monitor and set baud rate to 9600. You will

see “Hello Keyestudio!” on the monitor.

/*
 keyestudio
 Print “Hello Keyestudio!”
 http://www.keyestudio.com
*/
void setup() {
 // put your setup code here, to run once:
 Serial.begin(9600); //Set the serial port baud rate to 9600
}

void loop() {
 // put your main code here, to run repeatedly:
 Serial.println("Hello Keyestudio!"); //Serial port printing
 delay(1000); //Delay of 1 second
}

1. Toggle Auto-scroll - Sets whether the prints scroll automa�cally
2. Toggle Timestamp - Sets whether to display print �me
3. Clear Output - Clears printed messages
4. Serial Input
5. Serial Output Format
6. Baud Rate - Sets the baud rate you need
7. Prin�ng Window

7. Basic Code in Arduino IDE

7.1 Arduino IDE Programming Language

The default op�on for programming your board to connect to the Arduino is by using
the C++ language.

C++ is o�en viewed as a superset of C, but there are a few of the differences between
the two languages. C is procedural while C++ is object-oriented. Early Arduino core
library was wri�en in C, yet the latest library contains both C and C++ due to the idea of
object orienta�on.

Generally, Arduino Languages, which is also known as the Arduino API, is formed by the
secondary encapsula�on of the microcontroller libraries at lower levels. MCU users
must deal with registers. Nonetheless, these API allows beginners to control Arduino
without complex register configura�on, which improves development efficiency.

7.2 Program Structures

Arduino consists of two main func�ons:

void setup(){}

When the code starts running, setup () func�on is called. It ini�alizes variables, sets pin
modes, and imports libraries. It runs only once when Arduino board is powered on or
reset.

void loop(){}

It is equivalent to an endless loop while(1){}.

Of course, you can customize func�ons in the above two. Note that the two func�ons
are essen�al, otherwise an error will be reported.

7.3 Common Statements

7.3.1 delay(value) ;

delay(); is a delay func�on, which is used where the program needs to wait.

 Syntax: delay(value)

value: Delay �me value (unit: ms); 1S = 1000mS, 1mS = 1000 uS; Generally we use mS

7.3.2 digitalWrite(Pin,State);

digitalWrite(); is used to control the specified pin to output HIGH or LOW

 Syntax: digitalWrite(pin, value)

pin: the Arduino pin number
value: HIGH or LOW

7.3.3 digitalRead(Pin)

digitalRead(Pin) is used to read TTL level of digital pins, high (1), low (0)

 Syntax: digitalRead(Pin);

Pin: The digital pin that needs to be read

7.3.4 analogWrite(Pin,Vlaue)

analogWrite(); outputs analog value (PWM signal). It can be used to light an LED at
different brightness or drive a motor at different speeds.

A�er analogWrite (); is called, this pin will generate a stable rectangular wave with the
specified duty cycle un�l it is called next �me on the same pin. So do digitalRead () and
digitalWrite ().

 Syntax: analogWrite(pin, value)

pin: the Arduino pin to write to. Allowed data types: int
value: the duty cycle: between 0 (always off) and 255 (always on). Allowed data
types: int

7.3.5 analogRead(Pin)

We learned the func�on of reading digital signals, and the analogRead() reads analog
signals. ESP32-CAM analog values range from 0 to 4095

 Syntax: analogRead(Pin);

Pin: The analog pin that needs to be read

7.3.6 pinMode(Pin,mode)

pinMode(); is used to set the specified pin to input or output or pull-up

 Syntax: pinMode(pin, mode)

pin: the Arduino pin number to set the mode of.
mode: INPUT, OUTPUT, or INPUT_PULLUP

7.3.7 if(){…}else{…}

if() is used to check whether the condi�on is met. If yes, execute codes in “{ }”. If not,
skip the execu�on.

else is the condi�on for “not”. If not, execute codes in “else { }”

7.3.8 for()

for statement is a basic loop structure that repeats a block of code a fixed number of
�mes. It is especially suitable for execu�on with a known number of cycles.

 Syntax of for loop:

Ini�aliza�on: Execute before the loop starts, usually to ini�alize one or more loop
control variables.
Condi�on: Check before each itera�on of the loop. If the condi�on is true (non-
zero), the loop is executed; If it is false (zero), the loop exits.
Itera�ve command: Execute at the end of each loop itera�on, usually to update
these variables.

①: Set the ini�al value of the loop; execute only once; then enter ②

②: Determine whether to meet the condi�on. Herein, i <= 255 , i is less than or equal
to 255 to enter the loop code ③

③: Loop code, put the code that needs to loop here. For instance, if we need to control
pwm value from 0 to 255, we set i to pwm and enter ④

for (Initialization; Condition; Iterative command) {
 // Loop: Codes to be executed repeatedly
}

④： i++ adds 1 to the value of original i, which also means i = i +1. So does i- -(i = i - 1).
A�er that, run code ⑤

⑤： A�er i + 1 (or i - 1), determine whether i is less than or equal to 255. If yes, execute
code ③. If not, exit the for loop.

7.3.9 while(condition){…}

The while loop runs indefinitely un�l the expression inside the () becomes false. It will
never exit unless you change the test variable. This could be in your code, such as an
incremental variable, or it could be an external condi�on, such as a test sensor.

7.3.10 Comparison Operators: “>,<,<=,>=,==,!=”

Comparing variables of different data types can produce unpredictable results.
Therefore, it is recommended to operate in the same data type (including
signed/unsigned types).

(1): > compares le� and right values or variables. When the le� operand is greater than
the right, outputs true. Or else, returns false.

 Syntax:

(2): >= compares le� and right values or variables. When the le� operand is greater
than or equal to the right, outputs true. Or else, returns false.

 Syntax:

(3): < compares le� and right values or variables. When the le� operand is smaller than
the right, outputs true. Or else, returns false.

x > y; // is true if x is bigger than y and it is false if x is equal or smaller than y

x >= y; // is true if x is bigger than or equal to y and it is false if x is smaller than
y

 Syntax:

(4): <= compares le� and right values or variables. When the le� operand is smaller
than or equal to the right, outputs true. Or else, returns false.

 Syntax:

(5): == compares le� and right values or variables. When the two operands equal to
each other, outputs true. Or else, returns false. (Note that there are two equal signs
“==”!)

 Syntax:

(6): != compares le� and right values or variables. When the two operands do not
equal to each other, outputs true. Or else, returns false.

 Syntax:

7.3.11 Arithmetic Operators: “+,-,*,/,%,=”

(1): addi�on (+) is one of the four main arithme�c opera�ons. The operator “+” (plus)
sums up the two operands to get a result.

 Syntax: sum = operand1 + operand2;

x < y; // is true if x is smaller than y and it is false if x is equal or bigger than y

x <= y; // is true if x is smaller than or equal to y and it is false if x is greater
than y

x == y; // is true if x is equal to y and it is false if x is not equal to y

x != y; // is false if x is equal to y and it is true if x is not equal to y

(2): subtrac�on (-) is one of the four main arithme�c opera�ons. The operator “-”
(minus) produces the difference value between the second operand and the first.

 Syntax: difference = operand1 - operand2;

(3): mul�plica�on (*) is one of the four main arithme�c opera�ons. The operator “*”
(asterisk) mul�plies the two operands to get a result.

 Syntax: product = operand1 * operand2;

(4): division method (/) is one of the four main arithme�c opera�ons. The operator “/”
divides the two operands to get a result.

 Syntax: result = numerator / denominator;

(5): Remainder opera�on (%) calculates the remainder of an integer divided by another.
It helps to keep variables within a specific range (such as the size of an array). The
operator “%” (percent) is used to perform the remainder opera�on.

 Syntax: remainder = dividend % divisor;

(6): A single equal sign (=) is an assigning operator in C++, which is a different meaning
from that of equa�ons in algebra. The operator “=” tells the MCU to assign any value or
expression on the right of the equal sign and store it in the variable on the le�.

 Sample:

7.3.12 Boolean Operators: “||,&&,!”

(1): || can be regard as “or”. If either of the two operands is true, the result of the
logical OR is true.

 Sample:

int sensVal; // declare an integer variable named sensVal
 sensVal = analogRead(0); // store the (digitized) input voltage at analog pin 0 in
SensVal

(2): && can be regard as “and”. The result of a logical AND is true only if both operands
are true.

 Sample:

7.3.13 #include

“#include” imports the external library(s) in a Sketch, so that programmers can access to
considerable standard C libraries (groups of prefabricated func�ons), as well as exclusive
libraries for Arduino.

 Syntax: #include <LibraryFile.h> or #include "LocalFile.h"

7.3.14 #define

“#define” is used to set constant(a quan�ty that does not vary).

 Syntax: #define constantName value

constantName: the name of the macro to define
value: the value to assign to the macro

7.3.15 Serial.begin(9600)

Serial.begin(9600); sets serial baud rate. Serial port prin�ng can be performed only a�er
the baud rate is set to the same as that of the serial prin�ng tool. 9600 and 115200 are
the most common.

7.3.16 Serial.print()

Serial.print(); prints data without wrapping on the serial monitor. Enter characters(need
to be placed in double quotes) or variables in parentheses.

if (x > 0 || y > 0) { // if either x or y is greater than zero
 // statements
 }

if (digitalRead(2) == HIGH && digitalRead(3) == HIGH) { // if BOTH the switches read HIGH
 // statements
 }

7.3.17 Serial.println()

Serial.println(); prints data with wrapping on the serial monitor. Enter characters(need to
be placed in double quotes) or variables in parentheses.

7.3.18 int

int declares integer variables. For example, int i = 0; declares a variable named i
whose value equals to 0.

7.3.19 char

char declares character variables. For example, chat ch = ‘A’ declares a character
named ch whose content is ‘A’.

To learn more about the Arduino API, check out the Language Reference | Arduino
Documenta�on

8. Project Code Files

These files include source codes.

Click to download the code files.

9. On-board LED

https://docs.arduino.cc/language-reference/#variables
https://docs.arduino.cc/language-reference/#variables
https://docs.keyestudio.com/projects/KS5023/en/latest/_downloads/5d1b57111f99c6c53d315d7a0745f42d/codes.zip

9.1 Introduction to On-board LED

From its appearance, ESP32-CAM comes with an on-board LED. How to light it up?
Let’s first figure out the control pins of this LED from the schema�cs of ESP32-CAM:

From schema�c diagram, we can tell the pin of LED is GPIO4. Let’s take a look how this
circuit controls the LED.

LED posi�ve pole is connected to 3.3V, while whether the nega�ve is connected to
GND depends on a triode. When GPIO4 outputs high, GND is connected. If it outputs
low, the triode is not conducted so then disconnects the nega�ve and GND. Yet why a
triode? It is because the current output of GPIO is limited and cannot control large
amount of current.

9.2 LED Blink

We program to turn on the LED for 500ms and then off for another 500ms. Repeat
these ac�ons and LED blinks.

9.3 Breathing LED

We have learned how to turn on/off the LED. What about if we want to change its
brightness? If so, PWM plays an important role.

What is PWM?

Pulse width modula�on, short for PWM, is a solu�on that simulates the change of
analog signals through digital ones.

Pulse width is the high level in a complete square wave cycle. So, pulse width
modula�on is to adjust the high level (of course, in other words, low level is also

/*
 Project: LED blink
 Author: Keyestudio
 Function: how to control LED on/off
*/
int ledPin = 4; //set variable ledPin to pin GPIO4
void setup() {
 // put your setup code here, to run once:
 pinMode(ledPin,OUTPUT); //set pin GPIO4 to output
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(ledPin,HIGH); //set pin GPIO4 to output high
 delay(500); //delay 500ms
 digitalWrite(ledPin,LOW); //set pin GPIO4 to output low
 delay(500); //delay 500ms
}

adjusted because the cycle is fixed).

PWM frequency

the number of �mes the signal going from high level to low level and back to high
level in 1 second (one cycle), that is, how many cycles there are in a second.

Unit: Hz

Expression: 50Hz 100Hz

PWM cycle

If the frequency is 50Hz, the cycle will be 20ms, i.e., there are 50 PWM cycles in one
second.

PWM duty cycle

the ra�o of high level �me to the whole cycle �me.

Unit: %(1% ~ 100%)
Cycle: The �me of a pulse signal. The number of cycles in 1s equals the
frequency.
Pulse width �me: high level �me.

T =
1

f Cycle =
1

frequency

The rela�onship between duty cycle and LED brightness.gif

The longer the high level �me is, the greater the duty cycle will be, and the brighter the
LED will be.

PWM outputs through analogWrite(Pin,Value) , among which Pin is the output pin of
PWM, and Value is PWM value (ranging from 0-255).

Codes of Breathing LED:

A�er upload the code, LED gradually lights up and dims to off.

Conceive: Call analogWrite(Pin,Value) to output PWM, u�lize for loop to operate PWM
plus/minus 1, so that PWM value increases from 0 to 255 or deceases from 255 to 0.

10. L298N Module

10.1 Introduction to L298N

The L298 motor drive module, produced by ST Semiconductor Group, integrates a dual-

/*
 Project: Breathing LED
 Author: Keyestudio
 Function: how to conttrol the brightness of LED
*/
int ledPin = 4; //set variable ledPin to pin GPIO4
void setup() {
 // put your setup code here, to run once:
 pinMode(ledPin, OUTPUT); //set pin GPIO4 to output
}

void loop() {
 // put your main code here, to run repeatedly:
 for (int i = 0; i <= 255; i++) { //Loop increases the value of i from 0 to 255
 analogWrite(ledPin, i); //GPIO4 outputs as PWM and sets the PWM value to i
 delay(10); //Delay 10ms
 }
 for (int i = 255; i >= 0; i--) { //Loop reduces the value of i from 255 to 0
 analogWrite(ledPin, i); //GPIO4 outputs as PWM and sets the PWM value to i
 delay(10);
 }
}

way full-bridge motor drive chip, which is commonly used to drive relays, solenoids,
solenoid valves, DC motors, and stepper motors. L298N(N is the package iden�fier for
the L298) is able to drive a two- or four-phase stepper motor, or two DC motors.

10.2 L298N Parameters

Drive part terminal power supply VDD: 5V~35V
Drive part peak current Io: 2A
Logic part terminal power supply: 5V
Logical part opera�ng current: 0~36mA
Control signal input voltage: LOW, HIGH
Enable signal input voltage: LOW(invalid control signals), HIGH(valid control signals)

10.2 L298N Pinout

10.3 Circuit Design

We connect 9V ba�eries to the board to supply power to the car:

- Connect ba�ery posi�ve to L298N +VDD

- Connect ba�ery nega�ve to L298N GND

We use L298N +5V as the power supply for the ESP32-CAM module:

- Insert the power jumper on the L298N

- Connect L298N +5V to ESP32-CAM 5V

- Connect L298N GND to ESP32-CAM GND

Signal connec�on of ESP32-CAM and L298N is as below:

- Connect L298N IN1 to ESP32-CAM GPIO 14

- Connect L298N IN2 to ESP32-CAM GPIO 15

- Connect L298N IN3 to ESP32-CAM GPIO 13

- Connect L298N IN4 to ESP32-CAM GPIO 12

Since we will not control the speed, the car will run at maximum speed, so just plug in
the ENA and ENB jumpers.

Complete circuit connec�on:

Func�on ESP32-CAM Motor drive board Le� motor Right mo

Right motor control pin GPIO14 IN1

Right motor control pin GPIO15 IN2

Le� motor control pin GPIO13 IN3

Le� motor control pin GPIO12 IN4

ESP32-CAM power + 5V 5V

ESP32-CAM power - GND GND

Right motor output pin OUT1 black wire

Right motor output pin OUT2 red wire

Le� motor output pin OUT3 black wire

Le� motor output pin OUT4 red wire

10.4 Motor Drive Logic

Take the car as a reference, so the rota�on direc�on of two motors is forwards if the car
moves forward, while it is reversal if the car moves backward.

The le� motor is controlled by GPIO12 and GPIO13; the right one is controlled by
GPIO13 and GPIO14.

Car state GPIO12(L) GPIO13(L) GPIO14(R) GPIO15(R) Le� motor

FORWARD LOW HIGH LOW HIGH forwards

BACKWARD HIGH LOW HIGH LOW reversal

TURN LEFT HIGH LOW LOW HIGH reversal

TURN RIGHT LOW HIGH HIGH LOW forwards

STOP LOW LOW LOW LOW stop

10.5 Codes to Drive Motors

A�er uploading the code, the car moves forward and backward, and turns le� and right,
and then stops. Each ac�on lasts 2 seconds and all ac�ons loop in this order.

/*
 Project: motor drive
 Author: Keyestudio
 Function: how to control car move forward and backward, turn left and right
*/

//set motor control pins
#define MOTOR_R_PIN_1 14
#define MOTOR_R_PIN_2 15
#define MOTOR_L_PIN_1 13
#define MOTOR_L_PIN_2 12

void setup() {
 //set serial baud rate
 Serial.begin(115200);
 //set pin modes
 pinMode(MOTOR_R_PIN_1, OUTPUT);
 pinMode(MOTOR_R_PIN_2, OUTPUT);
 pinMode(MOTOR_L_PIN_1, OUTPUT);
 pinMode(MOTOR_L_PIN_2, OUTPUT);
}

void loop() {
 //Forward
 Serial.println("Forward");
 digitalWrite(MOTOR_R_PIN_1, LOW);
 digitalWrite(MOTOR_R_PIN_2, HIGH);
 digitalWrite(MOTOR_L_PIN_1, HIGH);
 digitalWrite(MOTOR_L_PIN_2, LOW);
 delay(2000);
 // Backward
 Serial.println("Backward");
 digitalWrite(MOTOR_R_PIN_1, HIGH);
 digitalWrite(MOTOR_R_PIN_2, LOW);
 digitalWrite(MOTOR_L_PIN_1, LOW);
 digitalWrite(MOTOR_L_PIN_2, HIGH);
 delay(2000);
 // Left
 Serial.println("Left");
 digitalWrite(MOTOR_R_PIN_1, LOW);
 digitalWrite(MOTOR_R_PIN_2, HIGH);
 digitalWrite(MOTOR_L_PIN_1, LOW);
 digitalWrite(MOTOR_L_PIN_2, HIGH);
 delay(2000);
 // Right
 Serial.println("Right");
 digitalWrite(MOTOR_R_PIN_1, HIGH);
 digitalWrite(MOTOR_R_PIN_2, LOW);
 digitalWrite(MOTOR_L_PIN_1, HIGH);
 digitalWrite(MOTOR_L_PIN_2, LOW);
 delay(2000);
 // Stop
 Serial.println("Stop");
 digitalWrite(MOTOR_R_PIN_1, LOW);
 digitalWrite(MOTOR_R_PIN_2, LOW);
 digitalWrite(MOTOR_L_PIN_1, LOW);
 digitalWrite(MOTOR_L_PIN_2, LOW);
 delay(2000);
}

10.6 Codes to Control Speed

The pervious project drive the car at a full speed. If we want to adjust the speed, the
digital output need to be replaced with PWM output.

First define two variables as speed values, and then change the PWM output to them.
In this way, the PWM output can be controlled by modifying these variables, so as to
control the speed of the car.

/*
 Project: adjust motor speed
 Author: Keyestudio
 Function: how to control the moving speed of the car
*/
//set motor control pins
#define MOTOR_R_PIN_1 14
#define MOTOR_R_PIN_2 15
#define MOTOR_L_PIN_1 13
#define MOTOR_L_PIN_2 12
//Define the initial value of the speed to be 100; if you want to change the speed of the
car, just change the values of the two variables (range from 0 to 255).
int MOTOR_R_Speed = 100;
int MOTOR_L_Speed = 100;

void setup() {
 //set serial baud rate
 Serial.begin(115200);
 //set pin modes
 pinMode(MOTOR_R_PIN_1, OUTPUT);
 pinMode(MOTOR_R_PIN_2, OUTPUT);
 pinMode(MOTOR_L_PIN_1, OUTPUT);
 pinMode(MOTOR_L_PIN_2, OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 //Forward . Use analogWrite to output analog values for speed control
 analogWrite(MOTOR_R_PIN_1, 0);
 analogWrite(MOTOR_R_PIN_2, MOTOR_R_Speed);
 analogWrite(MOTOR_L_PIN_1, MOTOR_L_Speed);
 analogWrite(MOTOR_L_PIN_2, 0);
 delay(2000);
 // Backward
 Serial.println("Backward");
 analogWrite(MOTOR_R_PIN_1, MOTOR_R_Speed);
 analogWrite(MOTOR_R_PIN_2, 0);
 analogWrite(MOTOR_L_PIN_1, 0);
 analogWrite(MOTOR_L_PIN_2, MOTOR_L_Speed);
 delay(2000);
 // Left
 Serial.println("Left");
 analogWrite(MOTOR_R_PIN_1, 0);
 analogWrite(MOTOR_R_PIN_2, MOTOR_R_Speed);
 analogWrite(MOTOR_L_PIN_1, 0);
 analogWrite(MOTOR_L_PIN_2, MOTOR_L_Speed);
 delay(2000);
 // Right
 Serial.println("Right");
 analogWrite(MOTOR_R_PIN_1, MOTOR_R_Speed);
 analogWrite(MOTOR_R_PIN_2, 0);
 analogWrite(MOTOR_L_PIN_1, MOTOR_L_Speed);
 analogWrite(MOTOR_L_PIN_2, 0);
 delay(2000);
 // Stop
 Serial.println("Stop");
 analogWrite(MOTOR_R_PIN_1, 0);
 analogWrite(MOTOR_R_PIN_2, 0);
 analogWrite(MOTOR_L_PIN_1, 0);
 analogWrite(MOTOR_L_PIN_2, 0);

11. Camera Robot Car

11.1 Introduction

We know how to control the car motor. Next, we will control the direc�on of the car
and the LED on/off via ESP32-CAM WiFi. Also, scene in front of the car will be
transmi�ed in real �me through the ESP32-CAM camera.

11.2 ESP32-CAM WiFi

ESP32 development board comes with built-in Wi-Fi (2.4G) and Bluetooth (4.2), which
enable it to easily connect to Wi-Fi network and communicate with other devices in the
network. You can display web pages in your browser via ESP32.

Arduino IDE provides <WiFi.h> library files that supports the configura�on and
monitoring of ESP32 Wi-Fi networking.

Base sta�on mode (STA / Wi-Fi Client mode): ESP32 is connected to Wi-Fi hotspot
(AP).
AP mode (So�-AP / Wi-Fi hotspot mode): Wi-Fi device(s) is(are) connected to

 delay(2000);
}

ESP32.
AP-STA mode: ESP32 is both Wi-Fi hotspot and a Wi-Fi device connected to
another Wi-Fi.
These modes supports mul�ple security modes, including WPA, WPA2 and WEP.
It is able to scan Wi-Fi hotspot (ac�ve or passive).
It support promiscuous mode monitoring IEEE802.11 Wi-Fi packets.

For more wifi reference, please visit: h�ps://docs.espressif.com/projects/esp-
idf/en/latest/esp32/api-reference/network/esp_wifi.html

espressif official: h�ps://www.espressif.com.cn/en/home

Firstly, make sure Wi-Fi connec�on is correctly set on ESP32. You can connect your
ESP32 to Wi-Fi a�er uploading the following code:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html
https://www.espressif.com.cn/en/home

In the code, please replace ssid and password with your Wi-Fi name and passwords.

Note: ESP32 can only connect to WiFi with frequency of 2.4GHz. If not, connec�on will
fail. Also, when using WiFi, antenna must be connected; otherwise network will be poor.

This code will connect the module to Wi-Fi network and print the connec�on status on
the serial monitor.

/*
 Project: print WiFi IP
 Author: Keyestudio
 Function: how to connect ESP32 to WiFi and output ESP32 ip address
*/
//Import wifi library
#include <WiFi.h>

//Set “your_SSID” to your wifi name
const char* ssid = "your_SSID";
//Set “your_PASSWORD” to your wifi passwords
const char* password = "your_PASSWORD";

void setup() {
 Serial.begin(9600);
 //Initialize wifi
 WiFi.begin(ssid, password);
 //Scan wifi; if connection is not complete, it is always in the state of connecting;
while loop
 while (WiFi.status() != WL_CONNECTED) {
 delay(1000);
 Serial.println("Connecting to WiFi...");
 }
 //The connection is successful. Print the IP address
 Serial.println("Connected to WiFi");
 Serial.println(WiFi.localIP());
}

void loop() {
}

const char* ssid = "your_SSID";
const char* password = "your_PASSWORD";

11.3 Web Page Display

We use ESP32’s Web server library to serve web pages. In the following sample code,
we will create a web page that displays “Hello, World”:

/*
 Project: Web Page Display
 Author: Keyestudio
 Function: how to connect ESP32 to WiFi and design web page to show “Hello World”
*/
#include <WiFi.h>
#include "esp_camera.h"
#include "esp_http_server.h"

// Replace with your network credentials
const char *ssid = "your_SSID"; // Set to your Wi-Fi name
const char *password = "your_PASSWORD"; // Set to your Wi-Fi passwords

httpd_handle_t camera_httpd = NULL; // HTTP server handle, used to start the server

// A simplified HTML page that contains only the content of the title
static const char PROGMEM INDEX_HTML[] = R"rawliteral(
<html>
 <head>
 <body>
 <h1>Hello World</h1> <!-- Title text in the body of the page -->
 </body>
</html>
)rawliteral";

// Callback function that handles root URL ("/") requests
static esp_err_t index_handler(httpd_req_t *req) {
 httpd_resp_set_type(req, "text/html"); // Set the content type of the response to HTML
 return httpd_resp_send(req, (const char *)INDEX_HTML, strlen(INDEX_HTML)); // Send an
HTML response with a title
}

// Start the HTTP Server and register requests to handle the root path ("/")
void startCameraServer() {
 httpd_config_t config = HTTPD_DEFAULT_CONFIG(); // Use the default HTTP configuration
 config.server_port = 80; // Set the HTTP server port to 80

 // Configure request handling for the root path ("/")
 httpd_uri_t index_uri = {
 .uri = "/", // Set the request URI path to "/"
 .method = HTTP_GET, // Set the request method to GET
 .handler = index_handler, // Set the callback function that handles the request
 .user_ctx = NULL // No additional context data
 };

 // Start the HTTP Server and register the root path for request processing
 if (httpd_start(&camera_httpd, &config) == ESP_OK) {
 httpd_register_uri_handler(camera_httpd, &index_uri); // Register URI handlers
 }
}

void setup() {
 Serial.begin(115200); // Set baud rate to 115200

 // Connect to Wi-Fi network
 WiFi.begin(ssid, password); // Start the Wi-Fi connection
 while (WiFi.status() != WL_CONNECTED) { // If Wi-Fi is not connected, wait
 delay(500); // Print every 500ms
 Serial.print("."); // Print dots on the serial monitor to indicate that a connection
is being attempted

In the code, please replace ssid and password with your Wi-Fi name and passwords.

Note: ESP32 can only connect to WiFi with frequency of 2.4GHz. If not, connec�on will
fail. Also, when using WiFi, antenna must be connected; otherwise network will be poor.

A�er uploading code, open the serial monitor and you will see the IP address of the
WiFi connected to ESP32-CAM. If nothing appears, press the reset bu�on on the
module. Connect your device to the same WiFi and open its browser, and you can see
the web page:

11.4 Codes of Camera Car

Note: This project involves extracurricular knowledge like HTML, CSS and JS, please
Google for details as here is only a brief introduc�on.

Herein, we will control the car through web page and monitor condi�ons ahead of it.

In the code, please replace ssid and password with your Wi-Fi name and passwords.

 }
 Serial.println(""); // wrap
 Serial.println("WiFi connected"); // Print "WiFi connected" when the Wi-Fi connection
is successful
 Serial.print("IP Address: ");
 Serial.println(WiFi.localIP()); // Print IP address
 // Start the HTTP Server
 startCameraServer(); // Start the HTTP Server and register the handler
}

void loop() {
 // The main loop is empty because the HTTP server processes the request in the
background
}

const char* ssid = "your_SSID";
const char* password = "your_PASSWORD";

For mobile phone users, please turn on a 2.5GHz hotspot on you phone for ESP32-
CAM. It’s faster.

Note: ESP32 can only connect to WiFi with frequency of 2.4GHz. If not, connec�on will
fail. Also, when using WiFi, antenna must be connected; otherwise network will be poor.

Test Code:

const char *SSID = "your_SSID";
const char *PASS = "your_PASSWORD";

/*
 Project: camera robot car
 Author: Keyestudio
 Function: We can control the car to move forward/backward and turn left/right, turn
on/off LED and speed up/down speed through wifi
 Speed level: we divide the maximum value of 255 into three parts, so each is 85. low
speed 85, mid speed 170, high speed 255
*/
#include "esp_camera.h" //ESP32-CAM camera driver
#include <WiFi.h> //WiFi library, used to connect to network
#include "esp_timer.h" //timer library
#include "img_converters.h" //image converter library, used to convert JPEG
#include "Arduino.h" //Arduino library
#include "fb_gfx.h" //Graphics library, used to display image buffers
#include "soc/soc.h" // Used to disable brownout detection for ESP32
#include "soc/rtc_cntl_reg.h" // Used to disable brownout detection for ESP32
#include "esp_http_server.h" // ESP32 HTTP server library, used to handle Web requests

// Replace with your network credentials
const char *ssid = "your_SSID"; // Set to your Wi-Fi name
const char *password = "your_PASSWORD"; // Set to your Wi-Fi passwords

//Set camera pins
#define PWDN_GPIO_NUM 32
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 0
#define SIOD_GPIO_NUM 26
#define SIOC_GPIO_NUM 27

#define Y9_GPIO_NUM 35
#define Y8_GPIO_NUM 34
#define Y7_GPIO_NUM 39
#define Y6_GPIO_NUM 36
#define Y5_GPIO_NUM 21
#define Y4_GPIO_NUM 19
#define Y3_GPIO_NUM 18
#define Y2_GPIO_NUM 5
#define VSYNC_GPIO_NUM 25
#define HREF_GPIO_NUM 23
#define PCLK_GPIO_NUM 22

//Set motor pins
#define MOTOR_R_PIN_1 14
#define MOTOR_R_PIN_2 15
#define MOTOR_L_PIN_1 13
#define MOTOR_L_PIN_2 12
//Set LED pins
#define LED_GPIO_NUM 4
//The variable of speed value is initially 85
int MOTOR_R_Speed = 85;
int MOTOR_L_Speed = 85;

#define PART_BOUNDARY "123456789000000000000987654321" // A boundary used to split MIME
streams
static const char *_STREAM_CONTENT_TYPE = "multipart/x-mixed-replace;boundary="
PART_BOUNDARY;
static const char *_STREAM_BOUNDARY = "\r\n--" PART_BOUNDARY "\r\n";
static const char *_STREAM_PART = "Content-Type: image/jpeg\r\nContent-Length:
%u\r\n\r\n";

httpd_handle_t camera_httpd = NULL;
httpd_handle_t stream_httpd = NULL;

void startCameraServer();

void setup() {
 WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); //disable brownout detector

 pinMode(MOTOR_R_PIN_1, OUTPUT);
 pinMode(MOTOR_R_PIN_2, OUTPUT);
 pinMode(MOTOR_L_PIN_1, OUTPUT);
 pinMode(MOTOR_L_PIN_2, OUTPUT);
 pinMode(LED_GPIO_NUM, OUTPUT); // LED is initially in output mode
 Serial.begin(115200);
 Serial.setDebugOutput(false);

//Configure camera
 camera_config_t config;
 config.ledc_channel = LEDC_CHANNEL_0;
 config.ledc_timer = LEDC_TIMER_0;
 config.pin_d0 = Y2_GPIO_NUM;
 config.pin_d1 = Y3_GPIO_NUM;
 config.pin_d2 = Y4_GPIO_NUM;
 config.pin_d3 = Y5_GPIO_NUM;
 config.pin_d4 = Y6_GPIO_NUM;
 config.pin_d5 = Y7_GPIO_NUM;
 config.pin_d6 = Y8_GPIO_NUM;
 config.pin_d7 = Y9_GPIO_NUM;
 config.pin_xclk = XCLK_GPIO_NUM;
 config.pin_pclk = PCLK_GPIO_NUM;
 config.pin_vsync = VSYNC_GPIO_NUM;
 config.pin_href = HREF_GPIO_NUM;
 config.pin_sccb_sda = SIOD_GPIO_NUM;
 config.pin_sccb_scl = SIOC_GPIO_NUM;
 config.pin_pwdn = PWDN_GPIO_NUM;
 config.pin_reset = RESET_GPIO_NUM;
 config.xclk_freq_hz = 20000000;
 config.pixel_format = PIXFORMAT_JPEG;

 if (psramFound()) {
 config.frame_size = FRAMESIZE_VGA;
 config.jpeg_quality = 10;
 config.fb_count = 2;
 } else {
 config.frame_size = FRAMESIZE_HVGA;
 config.jpeg_quality = 12;
 config.fb_count = 1;
 }

 // Camera init
 esp_err_t err = esp_camera_init(&config);
 if (err != ESP_OK) {
 Serial.printf("Camera init failed with error 0x%x", err);
 return;
 }
 // Wi-Fi connection
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");

 }
 Serial.println("");
 Serial.println("WiFi connected");

 Serial.print("Camera Stream Ready! Go to: http://");
 Serial.println(WiFi.localIP());

 // Start streaming web server
 startCameraServer();
}

void loop() {
}

//Design control web page
static const char PROGMEM INDEX_HTML[] = R"rawliteral(
<html>
 <head>
 <title>ESP32-CAM Robot</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta charset="UTF-8"/>

 <style>
 body {
 font-family: Arial;
 text-align: center;
 margin: 0 auto;
 padding-top: 20px;
 }

 .button-container {
 display: grid;
 grid-template-areas:
 "keyes forward led"
 "left stop right"
 "plus backward minus"; /* Adjust position */
 grid-gap: 10px;
 justify-content: center;
 align-content: center;
 margin-top: 20px;
 }

 .button {
 background-color: #2f4468;
 color: white;
 border: none;
 padding: 20px 0;
 text-align: center;
 font-size: 18px;
 cursor: pointer;
 width: 90px; /* Uniform width */
 height: 60px; /* Uniform heigth */
 border-radius: 15px; /* Fillet corner */
 }

 .led-button {
 background-color: #777; /* Initial gray, LED off */
 color: white;
 border: none;
 padding: 20px 0;

 text-align: center;
 font-size: 18px;
 cursor: pointer;
 width: 90px;
 height: 60px;
 border-radius: 15px;
 }

 .led-on {
 background-color: #f0c40f; /* Yellow, LED on */
 color: black;
 }

 .forward { grid-area: forward; }
 .led { grid-area: led; }
 .left { grid-area: left; }
 .stop { grid-area: stop; }
 .right { grid-area: right; }
 .backward { grid-area: backward; }
 .backwa { grid-area: backwa; }
 .plus { grid-area: plus; }
 .minus { grid-area: minus; }
 .keyes { grid-area: keyes; }

 img {
 width: auto;
 max-width: 100%;
 height: auto;
 border: 2px solid #2f4468; /* Give the video a border */
 border-radius: 10px;
 margin-top: 20px;
 }
 </style>
 </head>
 <body>
 <h1>ESP32-CAM Robot</h1>

 <!-- Video stream display -->

 <!-- Button container -->
 <div class="button-container">
 <!-- Forward -->
 <button class="button forward" onmousedown="toggleCheckbox('forward');"
ontouchstart="toggleCheckbox('forward');" onmouseup="toggleCheckbox('stop');"
ontouchend="toggleCheckbox('stop');">↑</button>

 <!-- LED on/off -->
 <button id="ledButton" class="led-button led" onclick="toggleLED()">OFF</button>

 <!-- other buttons -->
 <button class="button left" onmousedown="toggleCheckbox('left');"
ontouchstart="toggleCheckbox('left');" onmouseup="toggleCheckbox('stop');"
ontouchend="toggleCheckbox('stop');">←</button>
 <button class="button stop" onmousedown="toggleCheckbox('stop');">●</button>
 <button class="button right" onmousedown="toggleCheckbox('right');"
ontouchstart="toggleCheckbox('right');" onmouseup="toggleCheckbox('stop');"
ontouchend="toggleCheckbox('stop');">→</button>
 <button class="button backward" onmousedown="toggleCheckbox('backward');"
ontouchstart="toggleCheckbox('backward');" onmouseup="toggleCheckbox('stop');"

ontouchend="toggleCheckbox('stop');">↓</button>
 <button class="button plus" onmouseup="toggleCheckbox('plus');">+</button>
 <button class="button minus" onmouseup="toggleCheckbox('minus');">-</button>
 <button class="button keyes" >Keyes</button>
 </div>

 <script>
 // Video stream loading
 window.onload = function () {
 document.getElementById("photo").src = window.location.href.slice(0, -1) +
":81/stream";
 };

 // Control button request
 function toggleCheckbox(action) {
 var xhr = new XMLHttpRequest();
 xhr.open("GET", "/action?go=" + action, true);
 xhr.send();
 }

 // Logic of LED on/off
 let ledState = false; // LED state
 const ledButton = document.getElementById("ledButton");

 function toggleLED() {
 ledState = !ledState; // switch state
 if (ledState) {
 ledButton.classList.add("led-on");
 ledButton.textContent = "ON";
 } else {
 ledButton.classList.remove("led-on");
 ledButton.textContent = "OFF";
 }

 // Send LED state to server
 var xhr = new XMLHttpRequest();
 xhr.open("GET", "/action?led=" + (ledState ? "on" : "off"), true);
 xhr.send();
 }
 </script>
 </body>
</html>
)rawliteral";

static esp_err_t index_handler(httpd_req_t *req) {
 httpd_resp_set_type(req, "text/html");
 return httpd_resp_send(req, (const char *)INDEX_HTML, strlen(INDEX_HTML));
}

static esp_err_t stream_handler(httpd_req_t *req) {
 camera_fb_t *fb = NULL;
 esp_err_t res = ESP_OK;
 size_t _jpg_buf_len = 0;
 uint8_t *_jpg_buf = NULL;
 char *part_buf[64];

 res = httpd_resp_set_type(req, _STREAM_CONTENT_TYPE);
 if (res != ESP_OK) {
 return res;
 }

 while (true) {
 fb = esp_camera_fb_get();
 if (!fb) {
 Serial.println("Camera capture failed");
 res = ESP_FAIL;
 } else {
 if (fb->width > 400) {
 if (fb->format != PIXFORMAT_JPEG) {
 bool jpeg_converted = frame2jpg(fb, 80, &_jpg_buf, &_jpg_buf_len);
 esp_camera_fb_return(fb);
 fb = NULL;
 if (!jpeg_converted) {
 Serial.println("JPEG compression failed");
 res = ESP_FAIL;
 }
 } else {
 _jpg_buf_len = fb->len;
 _jpg_buf = fb->buf;
 }
 }
 }
 if (res == ESP_OK) {
 size_t hlen = snprintf((char *)part_buf, 64, _STREAM_PART, _jpg_buf_len);
 res = httpd_resp_send_chunk(req, (const char *)part_buf, hlen);
 }
 if (res == ESP_OK) {
 res = httpd_resp_send_chunk(req, (const char *)_jpg_buf, _jpg_buf_len);
 }
 if (res == ESP_OK) {
 res = httpd_resp_send_chunk(req, _STREAM_BOUNDARY, strlen(_STREAM_BOUNDARY));
 }
 if (fb) {
 esp_camera_fb_return(fb);
 fb = NULL;
 _jpg_buf = NULL;
 } else if (_jpg_buf) {
 free(_jpg_buf);
 _jpg_buf = NULL;
 }
 if (res != ESP_OK) {
 break;
 }
 //Serial.printf("MJPG: %uB\n",(uint32_t)(_jpg_buf_len));
 }
 return res;
}

// Control action processing
static esp_err_t action_handler(httpd_req_t *req) {
 char query[100];
 int len = httpd_req_get_url_query_len(req) + 1;
 if (len > sizeof(query)) {
 httpd_resp_send_404(req);
 return ESP_OK;
 }

 if (httpd_req_get_url_query_str(req, query, len) == ESP_OK) {
 if (strstr(query, "go=forward")) {
 // Forward

 Serial.println("Forward");
 analogWrite(MOTOR_R_PIN_1, 0);
 analogWrite(MOTOR_R_PIN_2, MOTOR_R_Speed);
 analogWrite(MOTOR_L_PIN_1, MOTOR_L_Speed);
 analogWrite(MOTOR_L_PIN_2, 0);
 } else if (strstr(query, "go=backward")) {
 // Backward
 Serial.println("Backward");
 analogWrite(MOTOR_R_PIN_1, MOTOR_R_Speed);
 analogWrite(MOTOR_R_PIN_2, 0);
 analogWrite(MOTOR_L_PIN_1, 0);
 analogWrite(MOTOR_L_PIN_2, MOTOR_L_Speed);
 } else if (strstr(query, "go=left")) {
 // Left
 Serial.println("Left");
 analogWrite(MOTOR_R_PIN_1, 0);
 analogWrite(MOTOR_R_PIN_2, MOTOR_R_Speed);
 analogWrite(MOTOR_L_PIN_1, 0);
 analogWrite(MOTOR_L_PIN_2, MOTOR_L_Speed);
 } else if (strstr(query, "go=right")) {
 // Right
 Serial.println("Right");
 analogWrite(MOTOR_R_PIN_1, MOTOR_R_Speed);
 analogWrite(MOTOR_R_PIN_2, 0);
 analogWrite(MOTOR_L_PIN_1, MOTOR_L_Speed);
 analogWrite(MOTOR_L_PIN_2, 0);
 } else if (strstr(query, "go=stop")) {
 // Stop
 Serial.println("Stop");
 analogWrite(MOTOR_R_PIN_1, 0);
 analogWrite(MOTOR_R_PIN_2, 0);
 analogWrite(MOTOR_L_PIN_1, 0);
 analogWrite(MOTOR_L_PIN_2, 0);
 } else if (strstr(query, "led=on")) {
 Serial.println("LED ON");
 digitalWrite(LED_GPIO_NUM, HIGH); // LED on
 } else if (strstr(query, "led=off")) {
 Serial.println("LED OFF");
 digitalWrite(LED_GPIO_NUM, LOW); // LED off
 } else if (strstr(query, "go=plus")) {

 MOTOR_R_Speed = MOTOR_R_Speed + 85;
 MOTOR_L_Speed = MOTOR_L_Speed + 85;
 if (MOTOR_L_Speed >= 255) MOTOR_L_Speed = 255;
 if (MOTOR_R_Speed >= 255) MOTOR_R_Speed = 255;
 // Serial.println("Speed +");
 // Serial.print("MOTOR_L_Speed:");
 // Serial.println(MOTOR_L_Speed);
 // Serial.print("MOTOR_R_Speed:");
 // Serial.println(MOTOR_R_Speed);
 } else if (strstr(query, "go=minus")) {

 MOTOR_R_Speed = MOTOR_R_Speed - 85;
 MOTOR_L_Speed = MOTOR_L_Speed - 85;
 if (MOTOR_L_Speed <= 85) MOTOR_L_Speed = 85;
 if (MOTOR_R_Speed <= 85) MOTOR_R_Speed = 85;
 // Serial.println("Speed -");
 // Serial.print("MOTOR_L_Speed:");
 // Serial.println(MOTOR_L_Speed);
 // Serial.print("MOTOR_R_Speed:");

11.5 Web Control Panel

A�er uploading the code, connect your control device(phone or tablet) to the same WiFi
of ESP32-CAM. Open browser on your device and enter the IP address on the serial
monitor, and a control panel will be loaded out. With this panel, we can control the car
to move and turn, the LED to turn on or off, and speed up or down.

 // Serial.println(MOTOR_R_Speed);
 }
 }

 httpd_resp_send(req, "", HTTPD_RESP_USE_STRLEN);
 return ESP_OK;
}

void startCameraServer() {
 httpd_config_t config = HTTPD_DEFAULT_CONFIG();
 config.server_port = 80;
 httpd_uri_t index_uri = {
 .uri = "/",
 .method = HTTP_GET,
 .handler = index_handler,
 .user_ctx = NULL
 };

 httpd_uri_t cmd_uri = {
 .uri = "/action",
 .method = HTTP_GET,
 .handler = action_handler,
 .user_ctx = NULL
 };
 httpd_uri_t stream_uri = {
 .uri = "/stream",
 .method = HTTP_GET,
 .handler = stream_handler,
 .user_ctx = NULL
 };
 if (httpd_start(&camera_httpd, &config) == ESP_OK) {
 httpd_register_uri_handler(camera_httpd, &index_uri);
 httpd_register_uri_handler(camera_httpd, &cmd_uri);
 }
 config.server_port += 1;
 config.ctrl_port += 1;
 if (httpd_start(&stream_httpd, &config) == ESP_OK) {
 httpd_register_uri_handler(stream_httpd, &stream_uri);
 }
}

11.6 Code Explanations

11.6.1 Import Libraries

11.6.2 Set Wi-Fi

11.6.3 Set Camera Pins

Depending on your camera model(such as AI_THINKER, M5STACK, etc.), select the
corresponding pin configura�on through condi�onal compila�on.

#include "esp_camera.h" //ESP32-CAM camera drive
#include <WiFi.h> //WiFi library, used to connect to network
#include "esp_timer.h" //timer library
#include "img_converters.h" //image converter library, used to convert JPEG
#include "Arduino.h" //Arduino library
#include "fb_gfx.h" //Graphics library, used to display image buffers
#include "soc/soc.h" // Used to disable brownout detection for ESP32
#include "soc/rtc_cntl_reg.h" // Used to disable brownout detection for ESP32
#include "esp_http_server.h" // ESP32 HTTP server library, used to handle Web requests

// Replace with your network credentials
const char *SSID = "your_SSID"; // Set to your Wi-Fi name
const char *PASS = "your_PASSWORD"; // Set to your Wi-Fi passwords

#define PWDN_GPIO_NUM 32
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 0
#define SIOD_GPIO_NUM 26
#define SIOC_GPIO_NUM 27

#define Y9_GPIO_NUM 35
#define Y8_GPIO_NUM 34
#define Y7_GPIO_NUM 39
#define Y6_GPIO_NUM 36
#define Y5_GPIO_NUM 21
#define Y4_GPIO_NUM 19
#define Y3_GPIO_NUM 18
#define Y2_GPIO_NUM 5
#define VSYNC_GPIO_NUM 25
#define HREF_GPIO_NUM 23
#define PCLK_GPIO_NUM 22

11.6.4 Set Motor/LED Control Pins

These pins are used to control the robot car’s two motors(move forward/backward, turn
le�/right, stop, accelerate/decelerate) and LED on/off.

11.6.5 HTTP Response Content Type

They are used for MIME types and stream boundaries when the HTTP server sends a
video stream.

11.6.6 Create HTTP Server & Processor

These variables are used to manage the HTTP server’s handles for camera streams and
control commands, respec�vely.

11.6.7 HTML Page: Web Interface

This is the HTML code for the Web page, which contains:

- camera video stream display frame

- control bu�ons(move forward/backward, turn le�/right, stop, accelerate/decelerate,

//motor control pins
#define MOTOR_R_PIN_1 14
#define MOTOR_R_PIN_2 15
#define MOTOR_L_PIN_1 13
#define MOTOR_L_PIN_2 12

#define LED_GPIO_NUM 4 // GPIO4 control LED

#define PART_BOUNDARY "123456789000000000000987654321" // A boundary used to split MIME
streams
static const char *_STREAM_CONTENT_TYPE = "multipart/x-mixed-replace;boundary="
PART_BOUNDARY;
static const char *_STREAM_BOUNDARY = "\r\n--" PART_BOUNDARY "\r\n";
static const char *_STREAM_PART = "Content-Type: image/jpeg\r\nContent-Length:
%u\r\n\r\n";

httpd_handle_t camera_httpd = NULL;
httpd_handle_t stream_httpd = NULL;

LED on/off)

When a bu�on is pressed, JavaScript sends requests through AJAX(say, /action?

go=forward) to ESP32-CAM, so as to control motor and LED.

11.6.8 HTTP Request Handler

index_handler processes GET requests to return web content:

stream_handler deals with the MJPEG stream of the camera, taking an image from the
camera one frame at a �me and sending it to the browser:

action_handler handles bu�ons’ click-to-send commands (such as move
forward/backward, turn le�/right, stop, accelerate/decelerate, LED on/off) and controls
motor opera�on:

static const char PROGMEM INDEX_HTML[] = R"rawliteral(
<html>
 <head>
 <title>ESP32-CAM Robot</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta charset="UTF-8"/>

......
 </body>
</html>
)rawliteral";

static esp_err_t index_handler(httpd_req_t *req){

 httpd_resp_set_type(req, "text/html");

 return httpd_resp_send(req, (const char *)INDEX_HTML, strlen(INDEX_HTML));

}

static esp_err_t stream_handler(httpd_req_t *req){

 // Capture pictures, convert them to JPEG streams and transfer them

}

11.6.9 Start HTTP Server

It starts two HTTP server, one for Web control panel (/), another for video stream
(/stream).

10. 6.10 Connect Wi-Fi

setup func�on connects to Wi-Fi, and start the HTTP server.

11.6.11 loop Function

static esp_err_t action_handler(httpd_req_t *req){

 // Control the motor according to the requested "go" parameter

}

void startCameraServer() {
......

}

void setup() {

 WiFi.begin(ssid, password); // connect to Wi-Fi

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("WiFi connected");

 startCameraServer(); // Start the camera server

}

void loop() {

 // Here is empty, and the server continues to run

}

loop is empty because the ESP32’s HTTP server runs in the background without
addi�onal code.

12. Troubleshooting Guide

12.1 Code Uploading Fails

1. Check the so�ware first. Click on the Arduino IDE to compile the code. If an

error is reported, there are some problems with Arduino IDE so�ware or the code,
rather than hardware.

A. Read the error message carefully, and troubleshoot the fault based on it.

B. If it is not a library file error, check whether the Arduino IDE ESP32 version you
are using is “2.0.12”, as other versions may be incompa�ble.

2. Click and no error is reported, so the so�ware and code are correct. Now we

need to check ports, and here are some methods:

A. Check that you have selected the correct development board and port number

B. Check whether there is a problem with the USB cable connected to the
development board and the computer. You may replace the USB port and cable.

C. When connec�ng to WiFi, ESP32-CAM consumes much power, so an external
power supply is required. Otherwise, ESP32-CAM may be always reset, resul�ng in
the inability to upload code.

12.2 Code Uploaded, But No IP on Serial Monitor

1. If the serial monitor shows no “ ... ”, it means you open the monitor a�er the
ESP32-CAM is connected to WiFi, so it will not reveal the IP address. For how to
solve it, just press the RES bu�on on the expansion board.

2. Since ESP32-CAM is not able to connect to 5GHz WiFi, check whether the
connected WiFi is with a frequency of 2.4GHz.

12.3 Cannot Connect to WiFi

1. Check that the WiFi name and passwords in the code are correct.
2. Check whether the connected WiFi is with a frequency of 2.4GHz.
3. Check whether the ba�ery holder switch is turned on. ESP32-CAM WiFi consumes

much power, so an external power supply is required.
4. Check whether the external antenna is properly connected.

12.4 No USB Port Number

1. Check whether the USB driver is installed. Please refer to 4.2 Adapter Board CH340 USB

Driver .
2. Replace the computer USB port and cable.

12.5 What Happens If Antenna Is Not Connected

If the antenna is not connected, the code is able to be uploaded, and WiFi may also
be connected, yet you can not visit the control panel page by the IP address. Even if
you have accessed, it is with poor signal. So be sure to connect the antenna before
using WiFi.

12.6 Cannot Enter Control Panel After Accessing Old
IP Address

The IP address may have changed. Connect to your computer to check if it is
changed. If you connect ESP32-CAM to a mobile hotspot, for some phone models,
the IP address can be viewed in the hotspot.

