

Introduction to Raspberry Pi Pico

Wireless Educational Kit

GK – EK – PICO

2

Table of Contents

Brief Overview…………………………………………………………………………...….…3

Raspberry Pi Pico Features……………………………………………………………...…...3

Dimensions………………………………………………………………………….….……...4

Pinout…………………………………………………………………………………..…….…5

Firmware Installation……………………………………………….…………….....….…...6

Intro to Thonny………………………………………………………………….……………7

Mini Test……………………………………………………………………………….……...9

Exercise 1: Traffic Lights System……………………………………………………..……10

Exercise 2: LED & Buzzer Burglar Alarm………………………………………………....11

Exercise 3: Reading the Potentiometer…………………………………………………...12

Exercise 4: The WS2812-8………………………………………………………………….14

Exercise 5: LCD1602 I2C Display………………………………………………………….15

3

Brief Overview

Raspberry Pi Pico is a high-performance, low-cost microcontroller with digital

interfaces. It has a dual-core Arm Cortex M0+ processor capable of running at up to

133MHz, containing 264KB of SRAM, and 2MB of flash memory. For programming,

Raspberry Pi's C/C++ SDK and MicroPython are available.

Raspberry Pi Pico Features

❖ RP2040 MCU chip.

❖ Dual-core Arm Cortex M0+ processor, the flexible clock running at up to

133MHz.

❖ 264KB of SRAM, 2MB of Flash memory.

❖ USB 1.1 with host and device support.

❖ Low-power sleep mode.

❖ Programming using storage over USB.

❖ 26 flexible GPIO pins.

❖ 3x 12-bit ADC, 2x SPI, 2x I2C, 2x UART, 16x PWM channels.

❖ An accurate clock and timer.

❖ A temperature sensor.

❖ 8x Programmable I/O state machines for custom utilization of peripherals.

4

Dimensions

5

Pinout

Note: If the debug pins in your Pi Pico are located near the middle of the board, they

are in the same order as shown in the diagram above.

6

Firmware Installation

To install the firmware on your Pi, you shall first download its file here. Connect your

Pi Pico to your computer.

If you do not see the above drive appear under Devices and drivers in This PC, try

plugging in the Pi Pico while pushing down on the BOOTSEL button.

When you access the drive, just paste the file downloaded in there.

When the transfer is complete, the window will close automatically and the Pi Pico will

eject itself from your computer. If you’d like to remove the firmware, connect the Pi to

the computer while BOOTSEL is pushed down.

https://rpf.io/pico-w-firmware

7

Intro to Thonny

Thonny comes with built-in Python and is the perfect installation for beginners thanks

to its friendly user interface, capability of highlighting syntax errors, and having a

simple debugger. Overall, the program is deprived of features that may distract

beginners.

To begin programming on your Pi Pico to perform the exercises in this document and

get familiar with coding, you will need to download Thonny here. Install the version

that suits your operating system on the official Thonny website.

When launching it, you will be greeted with a pop-up window where you will need to

specify preferred language and initial settings (standard will suffice). Click Let’s go! The

following window will pop up next:

Moving on, now you must configure the Python environment and select the Pico port.

To do this, you must first connect your Raspberry Pi Pico to your computer if it isn’t

already. Next, located on the very bottom right of the window, you must click where it

says Local Python 3 ● Thonny’s Python. The exact text may vary with the version of

Thonny, but you are essentially going to be selecting Configure Interpreter…

https://thonny.org/

8

Another window will pop up that displays Thonny options. With the Interpreter settings

tab already selected, click the Interpreter dropdown menu and find MicroPython

(Raspberry Pi Pico). Select it.

The window will change and you will be asked to select a port or WebREPL. Click the

dropdown menu and find the port that the Pi Pico is connected to. Name and COM

number may vary from device to device.

Click OK to confirm. The text in the Shell window should now change to the accustomed

Pi device:

9

Mini Test

When the pico is ready to be programmed, paste this code into Thonny but do not run

it yet because nothing is going to happen.

import time

led_external = machine.Pin(15, machine.Pin.OUT)#Set GPIO pin 15

#as the output pin and define the LED with it.

while True:

 led_external.toggle()

 time.sleep(2) #A delay of two seconds.

Fetch your breadboard and connect the following components as shown in the

diagram below:

Just a friendly reminder to pay attention to how you place the LED. Remember – the

flat side and shorter pin indicate that it’s the ground pin! Also, bear in mind that an LED

should never be plugged in without a resistor unless it has one built-in.

Now push the code by pressing:

If you see your LED blink at a frequency of 0.5Hz (2 seconds), congratulations! Your

Raspberry Pi Pico is ready for the exercises.

10

Exercise 1: Traffic Lights System

Connect the breadboard as specified in the above diagram. If you’re having trouble

plugging the buzzer’s unshrouded wires into the breadboard, try twisting each end into

a tight knot.

Open the Exercises folder you have downloaded and open Exercise_1.py. Push the code

to the Raspberry Pi and observe the LEDs. You can see that the LEDs light up in the

same order as the traffic lights do, simulating their process. You can see the delays in

the code and when the corresponding LED has a value of 1 to turn it on and a value of

0 to turn it off.

By pressing the button, the program uses a thread to remember that the button has been

pressed once and waits until the LEDs finish executing before returning to the if

statement at the very beginning of the main while True loop. The buzzer buzzes once

and the program makes sure to mark the button as not pressed anymore. This if

statement could be useful for making the delay of the red LED much longer to allow

some separate pedestrian LED to light up so they can cross. If you’d like, you can make

that system up yourself!

Task: Add a fourth LED (green) (do not forget the resistor!) to turn on for 5 seconds and

turn off afterwards when the if statement in the main while True loop executes. Hint:

Look at how the other LEDs were defined and utilized, as well as use the time.sleep()

function. Be sure to define the LED with a GP pin.

11

Exercise 2: LED & Buzzer Burglar Alarm

Connect the breadboard as specified in the above diagram. Refer to the image below to

understand the fundamentals of the passive infrared sensor.

This sensor has two trigger modes: B

mode is used for a repeatable trigger

where the LED stays on when there is

motion detected, and L mode is non-

repeatable where the LED blinks at a

rate of 1 second when there is activity

detected.

The detection distance potentiometer

can be set to detect motion between

approximately 2 – 10 meters.

Open Exercise_2.py and push the code to the Pi Pico. Move your hand in front of the

Fresnel lens and the LED should blink 3 times with the buzzer. Notice how there is just

a simple 1ms delay in the main loop – that’s because the program requires some degree

of activity.

Task: Decrease the detection distance significantly and make the LED blink one time

with the buzzer going off once. Hint: Refer to the image and the for loop in the code.

12

Exercise 3: Reading the Potentiometer

Connect the breadboard as specified in the above diagram. Open the Exercises folder

you have downloaded and open Exercise_3.py. Push the code to the Raspberry Pi.

Navigate to the tabs on top of the Thonny application and select View -> Plotter. A

graph will be shown to display the current voltage passing through the potentiometer

to light up the red LED.

However, the values would not be displayed as voltages if not for the conversion factor

of 3.3 / 65535. Otherwise, you’d only see raw values. Try moving the potentiometer to

see how it affects the values and the brightness of the LED.

13

Task: Implement a second LED (do not forget the resistor!) that turns on when the

voltage passing through the first LED is greater than or equal to (>=) 3 volts and turns

off when less than (<) 3 volts. Hint: Use the if statement pseudocode established below

to help you out. Refer to Exercise 1 to set up the LED if you must.

if voltage greater than or equal 3:

 LED is ON

else:

 LED is OFF

14

Exercise 4: The WS2812-8

A breadboard is optional for this exercise. Connect the Pi Pico and the WS2812-8 as

shown in the above diagram and open Exercise_4.py on Thonny. Run the code.

Upon running the code, you can see all eight LEDs on the WS2812-8 flash three different

colors with a delay in between. Because this is one big component, it’s a bit more

complicated than just a regular LED and requires more lines of code to configure and

set up. Because of that, all three alternating colors are put inside a state machine system.

A state machine is essentially just a big loop in a program or system consisting of states

that transfer from one another. A transfer can happen through delays or events.

Visually, a state machine will look like this:

This example uses a coin lock system. When a lock is locked and you try pushing it, it

will not unlock. However, when you provide a coin, the lock unlocks (state transfer).

Providing another coin will keep the lock unlocked. When you push the unlocked lock,

it will lock (state transfer). This whole procedure makes up this state machine system.

“Locked” and “Unlocked” are the states, while “Push” and “Coin” are its triggers.

Task: Draw the state machine for this exercise’s code. Hint: the three alternating colors

are the program’s states and the 5ms delays are its triggers.

15

 Exercise 5: LCD1602 I2C Display

A breadboard is optional for this exercise. Connect the Pi Pico and the LCD1602 as

shown in the above diagram and open RGB1602.py on Thonny. Save that file onto the

Pi Pico. Open Exercise_5.py and run the code.

You should see the following text pop up on the LCD screen:

The background color should also be changing as the text is displayed. The variables

“r”, “g”, and “b” are responsible for the colors and as you can see, each of the three

color channels are composed of a formula. Each formula contains a variable named “t”

that changes with each loop, causing the whole color to change.

Reading further, you can see the functions that are responsible for the text on the LCD

screen.

Task: Change the first line of the LCD screen so instead of “ABRA” it says your first

name. Center it. If your first name contains an odd number of letters, do not worry –

add an exclamation point! Hint: Use the space key to manipulate how many rows to the

right the text is.

Congratulations! You have finished the five fundamental exercises and

learned how to use many peripherals with the Raspberry Pi Pico!

