

ESP8266 Weather Station

User Guide

V 1.0 Mar 2017

Contents

1. Introduction ... 4

2. Assembly .. 5

A. ESP8266 Module .. 5

B. OLED Display .. 6

C. DHT11 Humidity & Temperature Sensor .. 7

D. Wires & Cables .. 8

3. Tool Setup .. 9

A. Download and Install the Serial Driver .. 10

B. The Arduino IDE .. 11

C. Install the ESP8266 tool chain .. 12

D. Selecting the Correct Board .. 13

E. Setting the Correct Port ... 14

F. Testing the Setup: WiFi Scanner .. 15

G. Summary ... 16

4. ESP8266 Programming Basics .. 17

A. Preparation .. 17

B. The Arduino Sketch ... 18

C. Hello World: The serial console .. 19

D. Input/Output: GPIO pins .. 21

E. Interrupts ... 23

F. Measuring analog signals ... 24

G. WiFi ... 25

H. HTTP ... 26

5. The ESP8266 WeatherStation ... 30

A. Installing the libraries... 30

B. Open the Weather Station Example .. 32

C. Getting the OpenWeatherMap API Key .. 33

D. Configuring the Weather Station ... 34

E. Connecting the Hardware ... 35

F. First Run .. 37

G. Summary ... 38

6. The WeatherStation Code Explained ... 39

A. The JSON Streaming Parser... 39

B. The Grammar .. 41

C. The JSON Streaming Parser Library... 42

D. Conclusion ... 44

7. Collecting and Displaying Local Data ... 45

A. The Climate Node Setup ... 45

B. Thingspeak Setup ... 46

C. Programming the Climate Node .. 48

8. More Projects.. 49

A. The ESP8266 PlaneSpotter .. 49

B. The ESP8266 WorldClock .. 50

1.Introduction

The ESP8266 WeatherStation is one easy way to get started with the ESP8266 and IoT. The

included guide helps you step-by-step to setup an internet connected weather station which

shows current and forecasted weather information.

The Uctronics ESP8266 WeatherStation Kit has the advantage that everything fits together,

but you can of course also get the components from your preferred supplier. In this chapter

I will quickly go through the minimal requirements and the options you have to build your

first WeatherStation.

2.Assembly

A. ESP8266 Module

There are many different modules available based on ESP8266s, they differ in a number of

aspects such as the quantity of available GPIO pins or if they can be programmed easily

without need of an additional Serial-to-USB converter. If you are a beginer I suggest you use

a developer-friendly module like the NodeMCU V1.0 or the Wemos D1 mini. They come with

a USB connector and have the maximum number of available pins ready for your usage. The

absolute minimal requirement is that your ESP8266 module has at least two free GPIO pins

to connect it to the OLED display.

B. OLED Display

With the display, you also have many options: do you want the pixels to be white or blue, or

do you even prefer a two-color display where the footer is in one color and the rest in another?

What really matters is the driver chip and the protocol. The OLED library currently supports

I2C and SPI for both the SSD1306 and the SH1106 chip. The first is often used for 0.96” inch

displays while the second one is used for 0.96” displays. Displays with SPI interface will

consume more of your free GPIO pins.

C. DHT11 Humidity & Temperature Sensor

This DHT11 Temperature & Humidity Sensor features a temperature & humidity sensor

complex with a calibrated digital signal output. By using the exclusive digital-signal-

acquisition technique and temperature & humidity sensing technology, it ensures high

reliability and excellent long-term stability. This sensor includes a resistive-type humidity

measurement component and an NTC temperature measurement component, and connects

to a high-performance 8-bit microcontroller, offering excellent quality, fast response, anti-

interference ability and cost-effectiveness.

D. Wires & Cables

You will also need some wires to connect the display to the ESP8266. In case you want to

connect the display directly to the NodeMCU you will need at least four female-to-female

jumper wires, since both the display and the NodeMCU have male pin headers. The wires

don’t need to be long, 7.87” (20cm) is usually enough.

To program the ESP8266 module you will also need a micro USB cable. In case of the

NodeMCU this cable should have a micro-USB connector on the module side and a normal

USB connector for your PC or Mac.

3. Tool Setup

In this chapter, we will prepare your development environment by installing all the tools

necessary. Drivers are needed to communicate with the ESP8266, a tool called “Arduino IDE”

will let us write code, and a sample project will prove that the components are working well

together.

A. Download and Install the Serial Driver

To program the NodeMCU V1.0, your development platform (PC, Mac, Linux) needs to detect

the Serial-To-USB adapter soldered onto the ESP8266 module. This ESP8266 development

module has built in a high-quality Labs CP2102 Single-Chip USB to UART Bridge with Micro-

USB connector that baud rates up to 921600. You can download and install the driver from

here:

https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

B. The Arduino IDE

The Arduino Integrated Development Environment (IDE) is the tool you will use to program

the ESP8266. IDEs are more than just editors; they help you with various tasks during the

development process.

To install the Arduino IDE, go to https://www.arduino.cc/en/Main/Software and download the

latest version matching your operating system:

⚫ For Mac OS X, you can download a ZIP file which you then have to extract. Take the

extracted application “Arduino” and move it to your Applications folder.

⚫ For Windows, you have the option between an executable installer and a ZIP file. The ZIP

file might be the better option if you do not have administrator permissions on your

system. The installer on the other hand can put the libraries in the proper places.

http://www.arduino.cc/en/Main/Software

C. Install the ESP8266 tool chain

A tool chain is the set of tools that lets you compile and create binaries for a certain platform.

Since we want to create binaries for the ESP8266 we need a different tool chain than the one

that comes with the plain vanilla Arduino IDE. The Arduino IDE has a wonderful feature, Board

Manager, to save you the hassle of downloading many different files and copying them into

obscure locations. It lets you install support for many different chips and boards with just a

few clicks. But first of all we have to tell the Arduino IDE where it should look for board

definitions:

⚫ Open the Arduino IDE

⚫ Go to your preferences/settings and in the text box Additional Board Manager URLs enter

this URL: http://arduino.esp8266.com/stable/package_esp8266com_index.json

⚫ Now go to Tools > Board: … > Boards Manager…, search for the ESP8266 board and click

Install.

⚫ Get a coffee and wait until it finishes.

From time to time you want to come back to the Board Manager and make sure that you

have the latest version of the ESP8266 tool chain installed. To do that simply click on the

ESP8266 entry and select the latest version from the dropdown. Then click Update.

http://arduino.esp8266.com/stable/package_esp8266com_index.json

D. Selecting the Correct Board

Now your Arduino IDE knows about ESP8266 boards in general. But not all the ESP8266

boards are the same; there are subtle but important differences in available Flash Memory

and how they can be programmed. The selection of the correct board also defines the names

of the GPIO pins: the designers of the NodeMCU decided to introduce a completely new

naming scheme for the pins. Instead of calling them GPIO1, GPIO2 etc they decided to give

them different numbers by using a “D”- prefix. So D0 is GPIO16, D1 is GPIO5 and so on. By

selecting a NodeMCU board you automatically have the D naming scheme available, and this

helps a lot since these names are also printed on the module board.

So, let’s pick the correct board. If you bought the original Squix Starter Kit you will have to

choose a NodeMCU 1.0: Go to Tools > Board: * > NodeMCU 1.0 (ESP-12E Module) There is

a plentitude of modules available. Please make sure that you have the correct board selected

before you continue.

E. Setting the Correct Port

Serial interface: At the hardware level the ESP8266 is programmed through a serial interface.

In short this is a very common communication interface which normally requires three lines:

transmit (TX), receive (RX) and ground (GND). Both devices involved in the communication

need to agree on the rate the characters are sent over the wire. This rate is usually measured

in BAUD. 10 BAUD is equal to 1 character per second. Your average PC or Mac doesn’t have

such a serial interface, so how can we program the ESP8266? This is done through a Serial-

to-USB converter. Some ESPs already come with a built-in converter; others need an external

one for programming.

In an earlier step, you already installed the drivers for this converter. If everything went well

and the board is plugged into your computer you should now be able to select the serial

connection. It should show up in the Menu under Tools > Port. On my Mac the device is

called /dev/cu.SLAB_- USBtoUART. On a PC it should be listed as a COM port labelled COM#

(where # is some number).

If you cannot see a device that looks like the NodeMCU, try to unplug the ESP module and

re-plug it after a few seconds. Also try a different USB socket. If that doesn’t help consider

restarting your computer… Make sure that you installed the driver as mentioned in the chapter

about drivers.

F. Testing the Setup: WiFi Scanner

Thanks for bearing with the complicated preparation until getting to the really cool part. We

are going to run our first program on the NodeMCU! In the Menu of the Arduino IDE go to

File > Examples > ESP8266Wifi and select WiFiScan. A new window will open up. This window

is your current project and is also called a “Sketch”. To compile and transfer the binary to the

ESP8266 click on the green circle that contains an arrow on the very top of the window. If

everything went well this will compile the sketch andupload the binary to the ESP. It might

look something like this:

Wifi Scanner Output

If you see Done uploading. in the window, then click on the magnifying glass on the top right

of the window. This is the serial console that you can use to see output from the NodeMCU

module, or to send commands to the device. Make sure that the baud rate is set to 115200.

This rate is also set in the example code, and if you have a different setting the ESP will talk

with a different speed than your PC listens. You can set the baud rate on the bottom left of

the serial monitor. My output looks like this:

Serial Console of the Wifi Scanner

If you see something similar: congratulations! You have just set all the preconditions to run

the WeatherStation code.

G. Summary

Before we continue to the WeatherStation project let’s have a closer look at what we just

accomplished:

⚫ We installed a driver which lets us program the ESP8266 with custom code that we wrote.

Which driver needs to be installed depends on the Serial-to-USB converter we use. Some

ESP modules already have such a converter; others will need an additional one.

⚫ We downloaded and installed the Arduino IDE. In the IDE we write the code, compile it

and transfer it to the embedded device. If our code supports it we can even use the Serial

Monitor to communicate with the device.

⚫ We used an example project, called a Sketch, to test our setup. The sample project installs

firmware which uses the WiFi module to scan for available WiFi access points. It

repeatedly writes this data to the serial line, and we can display it by opening the Serial

Monitor tool. Remember, in a serial communication both parties need to agree on the

speed the characters are getting transmitted. The example sets this to 115200 baud.

4. ESP8266 Programming Basics

In this chapter, we will have a look at the building blocks of an Arduino sketch. This will help

you to understand and modify the Weather Station which we will build in the next chapter. If

you just want to get the WeatherStation running you can skip this chapter.

A. Preparation

In this chapter, we will work with exercises which you can download from GitHub. They contain

several Arduino projects for the ESP8266. For an exercise open the related project in your

Arduino IDE and try to solve the given task. If you get stuck or want to see an alternative

solution open the project which ends with “_Solution”:

⚫ Exercise_04_01: contains the first exercise in chapter 4

⚫ Exercise_04_01_Solution: contains a possible solution

Now download the Zip file from GitHub and extract it in a place you will find it later. There is

a green “Clone or download” button which lets you download a Zip file:

https://github.com/squix78/esp8266-getting-started

https://github.com/squix78/esp8266-getting-started

B. The Arduino Sketch

The Arduino platform was built with the beginner in mind. Compared to a normal C program

the Arduino IDE hides a few things from you to simplify the setup. First of all you do not have

to create a makefile to build your code into an executable binary. The Arduino IDE also

includes a default header file for you: #include "Arduino.h". This contains all definitions

needed for a regular Arduino program.

Another important change compared to a regular C/C++ program are the two default

functions setup() and loop(). The first will be only called once during startup, while the loop()

method will be called repeatedly. On a normal Arduino hardware (ATmega chip) you can

theoretically write code and never leave the loop() method again. The ESP8266 is a bit

different here. If your operations run for too much time a so-called watchdog will reset the

ESP8266. You can prevent this by allowing the controller to do important operations while

you are still in the main loop. Calling yield() or delay(ms) will do this.

C. Hello World: The serial console

Every self-respecting programming tutorial starts with a “Hello World” program. And I don’t

want to break with this tradition here. A Hello-World program usually does no more than

printing these two words somewhere on the screen. But we are programming a

microcontroller which does not have a screen yet. So where can we display the text? We will

use the Serial object to do that. While you are developing a program on the ESP8266, the

microcontroller is connected to the computer that the Arduino IDE is running on. We use this

connection to write a new binary onto the flash memory of the ESP8266. And while our

program is running we can also use it to write messages from the ESP8266 back to our

computer.

Using the Serial object is fairly easy. You have to initialize it first:

Serial.begin(115200);

This tells the Serial object that you want to communicate with a baud rate of 115200.

Remember to set the same transfer rate later in the serial console on your computer. Both

partners in the communication need to have the same speed settings or you will just see

garbage. If you want to send a message from your program to your computer you just do

this:

Serial.print("Hello ");

Serial.println("World");

Please have a look at the little difference between the first and the second line. The first uses

a method called print() and the second println(). The only difference is that the latter adds a

line break to the output.

Exercise 04.01: Hello world!

Now it is time to write our first program. Open the project Exercise_04_01 in your Arduino IDE

and fill in the required code to print “1. Hello World”, “2. Hello World” etc. Remember that

you only need to initialize the Serial object once, while you’ll have to print “<number>. Hello

world” as long as the code runs. Once you are happy with your solution upload the sketch to

your Arduino by clicking

If that was successful open the serial console by clicking on the magnifying glass:

Now your output should look something like this:

If you want to learn more about the Serial object you can find more in the following link:

http://esp8266.github.io/Arduino/versions/2.3.0/doc/reference.html#serial

The exercise contains another important built-in function:

delay(1000);

This instructs the processor to wait 1000 milliseconds (1 second) before continuing with the

execution. As mentioned earlier with this command it also gives the processor time to handle

other tasks, such as receiving or sending network packets over WiFi. In this context a call to

yield() does the same as delay(0).

http://esp8266.github.io/Arduino/versions/2.3.0/doc/reference.html#serial

D. Input/Output: GPIO pins

Now that we can talk to our microcontroller over the serial line it is time to interact with the

real world. Our ESP8266 is equipped with several so-called General Purpose Input Output or

in short GPIO pins. They can be used for many different applications such as sensing and

generating digital signals of the 3.3 Volt range. This is important if you plan to use an external

component with your ESP8266: hardware designed for older Arduinos often uses the 5V

(CMOS) range. Using such a device without a logic level shifter might destroy your ESP8266.

Using a GPIO pin is quite easy: first you tell the microcontroller if you want to read or write

from the pin. Then you do it. Here is the code for reading:

pinMode(PIN, INPUT);

int state = digitalRead(PIN);

Unless you want to change the mode of a pin you only need to call pinMode() once. Please

note that depending on the pin you can also use INPUT_PULLUP or INPUT_PULLDOWN.

Writing to a pin is not much different:

pinMode(PIN, OUTPUT);

digitalWrite(PIN, HIGH); // or

digitalWrite(PIN, LOW);

The second statement will show a HIGH level on PIN which will be 3.3V. The third statement

will set the pin to LOW which is 0V.

What values for PIN can you use? If you are using a generic ESP8266 module (not a NodeMCU)

your pins will be labeled GPIO0, GPIO1, etc. To use pin GPIO0 you would write digitalWrite(0,

HIGH); If you are using a NodeMCU things get a little bit more complicated. The original

creators of the NodeMCU LUA firmware and the development module of the same name had

the idea to give the pins different names. They are called D0, D1, etc. That by itself would not

be confusing yet but they are not using the same digits, e.g. GPIO1 is not equal to D1. Here

is a table to map the pins:

Raw Module Name NodeMCU &

Wemos Name

Raw Module Name NodeMCU &

Wemos Name

GPIO0 D3 GPIO9 D11

GPIO1 D10 GPIO10 D12

GPIO2 D4 GPIO11 N/A

GPIO3 D9 GPIO12 D6

GPIO4 D2 GPIO13 D7

GPIO5 D1 GPIO14 D5

GPIO6 N/A GPIO15 D8

GPIO7 N/A GPIO16 D0

GPIO8 N/A

PIN DEFINITION

NodeMCU DevKit Pin Map https://github.com/nodemcu/nodemcu-devkit-v1.0

D0(GPIO16) can only be used as gpio read/write, no interrupt supported, no pwm/i2c/ow

supported.

Exercise 04.02: Can’t touch this!?

In this exercise, you are going to read from the button on your NodeMCU labelled with FLASH.

This button is connected to the D3 pin. Put the D3 pin to input mode in the setup() method

and read from the pin repeatedly in the loop() and write the results to the console.

Exercise 04.03: Led it shine!

Let’s control an LED! Your NodeMCU has one built in and it is connected to D0. Like in the

previous example set the pin to the correct mode and then toggle it once per second.

Exercise 04.04: Every breath you take! (Bonus for Experts)

Pure blinking is boring. We want our little ESP8266 to live! Control the intensity of the LED

and make it look as if the ESP8266 was breathing. Note: if the LED was on another pin than

D0 we would use pulse width modulation (PWM) and the writeAnalog(PIN, INTENSITY)

method. But this feature is not available on D0 so you will have to do this in your code.

https://github.com/nodemcu/nodemcu-devkit-v1.0

E. Interrupts

Depending on your age you might remember interrupts from your PC. They were always

important to get your sound card to play beautiful music. The ESP8266 can also be controlled

by interrupts. In the previous exercises we were checking regularly for the state of a GPIO pin.

This is fine if you are not doing anything else in the main loop. But you might miss a change

in a state if it is very short, and that is were the interrupts can help. With an interrupt handler

you can tell the processor that you are interested in a specific type of change and a given pin.

This is how it works:

void buttonPressed() {

...

}

void setup()

{ pinMode(PIN, INPUT);

attachInterrupt(digitalPinToInterrupt(PIN), buttonPressed, CHANGE);

}

buttonPressed() is a method without parameters that gets called when there is a change on

PIN. Instead of CHANGE you can also use RISING which triggers the callback when the pin

changes from LOW to HIGH, or FALLING for a change in the opposite direction. Please do

not execute long tasks in the callback method. The ESP’s watchdog will reset the processor if

calling the interrupt takes too much time. You should not do much more than changing a

flag.

Exercise 04.05: I don’t want to miss a thing!

In this exercise we will setup an interrupt and turn an LED on and off with every press to the

button. See what happens when you use different interrupt modes like RISING, FALLING and

CHANGE.

F. Measuring analog signals

So far we can read and write the digital states HIGHand LOW, but what if we want to deal

with analog signals? The ESP has one Analog To Digital Converter (ADC) which can be used

to measure voltage in the range 0 - 1V. To do that use the following command:

unsigned value = analogRead(A0);

You can also use the ADC to measure the input voltage without any additional wiring. You

have to instruct the processor that you want to measure the supply voltage rather than the

value on A0 with a special command outside the setup() and loop() method. Here is an

example:

ADC_MODE(ADC_VCC);

void setup()

{ Serial.begin(115200);

}

void loop()

{ Serial.println(ESP.getVcc());

delay(500);

}

G. WiFi

The last few chapters were all about built-in functions of the Arduino/ESP8266 platform. Now

we will start using libraries which are part of the platform and are already installed. So how

can we use the WiFi module of the ESP8266? First of all you need to know that the ESP8266

can operate as a WiFi client (like a smartphone or laptop) and/or as an access point (like a

WiFi router or extender). You can set this mode with:

WiFi.mode(m);

where m must be one of the following modes: WIFI_AP (access point), WIFI_STA (client),

WIFI_AP_STA(AP and client) or WIFI_OFF.

Now let’s connect to your access point:

WiFi.begin(WIFI_SSID, WIFI_PWD);

This will connect you to an access point given its SSID and the password. Please note that this

call is not blocking. This means that the code will immediately proceed to the next instruction

whether the ESP successfully connects to the access point or not.

H. HTTP

By connecting to the internet you can exchange data between your ESP8266 and the network.

Let’s look at how we can load content from a web server using the Hyper Text Transfer

Protocol (HTTP). This protocol is the foundation of the World Wide Web.

1 #include <ESP8266WiFi.h>

2

3 char* ssid = "SSID";

4 const char* password = "PASSW0RD";

5

6 const char* host = "www.squix.org";

7

8 void setup() {

9 Serial.begin(115200);

10

11 Serial.print("Connecting to ");

12 Serial.println(ssid);

13

14 WiFi.begin(ssid, password);

15

16 // Wait until WiFi is connected

17 while (WiFi.status() != WL_CONNECTED)

{ 18 delay(500);

19 Serial.print(".");

20 }

21

22 Serial.println("");

23 Serial.println("WiFi connected");

24 Serial.println("IP address: ");

25 Serial.println(WiFi.localIP());

26 }

27

28 void loop()

{ 29 delay(5000);

http://www.squix.org/

30

31 Serial.print("connecting to ");

32 Serial.println(host);

33

34 // Use WiFiClient class to create TCP connections

35 WiFiClient client;

36 const int httpPort = 80;

37 if (!client.connect(host, httpPort)) {

38 Serial.println("connection failed");

39 return;

40 }

41

42 // We now create a URI for the request

43 String url = "/guide/";

44

45 Serial.print("Requesting URL: ");

46 Serial.println(url);

47

48 // This will send the request to the server

49 client.print(String("GET ") + url + " HTTP/1.1\r\n" +

50 "Host: " + host + "\r\n" +

51 "Connection: close\r\n\r\n");

52

53 unsigned long timeout = millis();

54 while (client.available() == 0) {

55 if (millis() - timeout > 5000) {

56 Serial.println(">>> Client Timeout !");

57 client.stop();

58 return;

59 }

60 }

61

62 // Read all the lines of the reply from server and print them to Serial

63 while(client.available()){

64 String line = client.readStringUntil('\r');

65 Serial.print(line);

66 }

67

68 }

How does this work? First we define the SSID and password of the WiFi access point we want

to connect to. Please note that there are better ways to do that. The WiFiManager

(https://github.com/tzapu/WiFiManager) for instance starts the ESP8266 as an access point if

it cannot connect to any SSID. You then use your smartphone to configure the WiFi credentials

and there is no need to hard code these into your firmware. But for the sake of simplicity let’s

ignore this here.

On line 14 we start connecting to the defined access point and wait until the connection is

established. After all there is no point to send requests to a server if the network connection

is not confirmed yet.

Line 49 sends the request to the server. The command GET /guide/ HTTP/1.1\r\n might look

strange to you. This is how your browser talks to the web server. GET is the command for the

webserver, /guide/ is the resource on the server we want to get and HTTP/1.1 is the protocol

that we are using. If you are interested how this works in detail have a look at this Wikipedia

article: https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol.

On line 63 we print out the response line by line as long as there is text coming in. Sadly this

is quite complicated. Especially if we want to add encryption in the form of SSL to the

connection. This protects your data and makes sure that you are talking to the right server.

With the following command we can verify that the host matches the given SHA1 fingerprint.

1 if (client.verify(fingerprint, host)) {

2 Serial.println("certificate matches");

3 } else {

4 Serial.println("certificate doesn't match");

5 return;

6 }

How can you find this fingerprint? Your browser can help you with this. I will show it with

Chrome. First open the page you need the fingerprint for, in my case www.google.ch. Then

click on the little lock symbol and then on Details:

https://github.com/tzapu/WiFiManager
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://www.google.ch/

A click on View Certificate will bring up the detail window about Google’s certificate:

Scroll down to the bottom of the window and copy the value behind SHA1. This is the

fingerprint to verify that you are actually talking to www.google.ch.

Exercise 04.06: Better safe than sorry!

In this exercise we will start with the same program as I included earlier in this chapter. But

now you are going to change the code to receive the search site from google on a secure

channel. Complete the following tasks:

⚫ Change the host from www.squix.org to www.google.ch

⚫ Get the SHA1 fingerprint for www.google.ch

⚫ Add a check that this fingerprint matches www.google.ch

http://www.google.ch/
http://www.squix.org/
http://www.google.ch/
http://www.google.ch/
http://www.google.ch/

5. The ESP8266 WeatherStation

In this chapter we will get the WeatherStation to run. We will install several libraries used for

setting up access to the internet, for reading and parsing the data from the service providing

your local weather forecasts, as well as a library to display the data on the OLED display. Then

we will adjust the WeatherStation code to display your local weather information and get a

so-called API key to access the weather forecast service.

A. Installing the libraries

Libraries: If you are new to programming you might ask what libraries are. When we develop

programs we use libraries to not have to invent the wheel over and over again. Libraries

contain functionality that might be used in different places without creating copies of code

which is hard to maintain. So for you libraries are a wonderful thing: you can concentrate on

the things that really matter to you. In the case of the WeatherStation they provide a lot of

functionality which normally would take you a lot of time to write yourself.

In order to get the WeatherStation to compile you will have to download three libraries. The

first library is the WeatherStation itself. This will give you some new entries in the Example

menu of the Arduino IDE. The second one is to read and understand the data which the

program gets from the weather forecast service. And the third is needed to use the beautiful

OLED display.

Go to Sketch > Include Library… > Manage Libraries… and install the following three libraries.

Make sure that you always have the latest version of the libraries installed. Users have reported

many issues which could be reduced by simply updating the library. Also make sure that you

only have one version of each of the libraries installed.

ESP8266 Weather Station Library

Json Streaming Parser Library

SSD1306 OLED Library

B. Open the Weather Station Example

You have now installed the three required libraries. Often Arduino libraries contain example

sketches which behave like a template to kick-start your project. If you have already worked

with the Arduino IDE you might have used other demo sketches before. In the last chapter

we used the Wifi Scanner Sketch. Now we are going to use the WeatherStation template to

get started. Go to File > Examples > ESP8266 Weather Station > WeatherStationDemo Save

the new sketch with a good name in a location you will remember - but leave it open.

C. Getting the OpenWeatherMap API
Key

API (Key): What is an API and what is an API Key? Application Programming Interfaces (APIs)

are a well-defined way on how one piece of code can talk to another. This can be on the

same device, but often refers to the communication between two devices connected by a

network. For the WeatherStation we need to get current and forecast data in a machine-

readable format. To do this we will call the API of a service called OpenWeatherMap.

OpenWeatherMap has different price plans and we will use the Free plan which has

some limitations to distinguish it from the per-pay plan. To have better control over the

users who access the service we will have to get a short text value - the API key - before

we can call it. You should treat API keys like a password and be careful with them. For

instance, do not post them to a forum, and don’t commit them to a public code repository. If

you do your key may be cancelled, and all your projects will fail!

To get the OpenWeatherMap API key go to https://openweathermap.org/appid and click on

the sign up button. Then get your API key from this page:

https://openweathermap.org/appid

C. Getting the OpenWeatherMap API
Key

The ESP8266 WeatherStation:

OpenWeatherMap API Page

If you should forget your key you can always come back and get it here.

D. Configuring the Weather Station

Earlier when you chose the WeatherStation example you created a copy of the code included

in thelibrary. This code needs to be adapted so that it works for you. There are better options

than putting configuration into your code: we could for instance offer a web interface where

you could configure your settings. This would be much better since you could change values

without changing the code, which would require compiling a new firmware and sending it

over to the device. But to get started we will try to keep things simple…

⚫ Let’s start with the WiFi Settings. Replace yourssid with the name of your WiFi network

and yourpassw0rd with its password. I had problems with a network that contained a

dash (“-“) in the SSID. If you are having problems consider this hint…

⚫ Next is the update interval. This value specifies how often the weather data should be

updated from the internet. The default is 600 seconds (10 minutes). In my experience this

is a goodvalue, because you don’t have unlimited requests in your free

OpenWeatherMap API account and the weather doesn’t change so often anyway.

⚫ Now to the Display Settings. If you attach the display as I show in the next chapter you

don’t have to change anything here. D3 and D4 are the pin names in the NodeMCU

module. If you get compilation errors about them make sure that you have set your

board to NodeMCU V1.0, if that is the module you are using. If you have another board

just replace the pin numbers with the proper pin number, e.g. 5 or 6.

⚫ Use the Time Client Settings section to adjust your local time zone offset compared to

the UTC time zone. It also allows a half-hour offset, thanks to the user who lives in such

a time zone and made me implement that. (Ignorance is bliss until you get confronted

with it…)

⚫ In the OpenWeatherMap section you can now use the API key you received in the

previous section. Also set the country and city of the place you want to show. To figure

out which values work you can modify this URL:

http://api.openweathermap.org/data/2.5/weather?q=zurich,ch&appid=APIKEY&u

nits=metric and replace APIKEY with your state or country and city.

For the moment ignore the ThingSpeak settings. You might use it in a future project (have a

look at the “More Projects” chapter). Now we are almost ready to get the weather station

running on the ESP8266 for the first time. But we need to wire the display to the NodeMCU

first.

http://api.openweathermap.org/data/2.5/weather?q=zurich,ch&appid=APIKEY&units=metric
http://api.openweathermap.org/data/2.5/weather?q=zurich,ch&appid=APIKEY&units=metric

E. Connecting the Hardware

The WeatherStation Kit comes with an OLED display that has four connectors: VCC, GND, SCL

and SDA. They have the following meaning:

⚫ VCC and GND are the power supply of the display. VCC is the positive supply voltage

and GND stands for “ground”. They will be connected to 3V3 and GND on the NodeMCU

board

⚫ SCL and SDA are the data lines of the I2C protocol. SCL stands for Serial Clock and SDA

for Serial Data.

In the following diagram, I used a breadboard and male-to-male jumpers to connect the

components. But you can also connect them directly with four (colored) female-to-female

jumpers. They come with the WeatherStation Kit. Just peel the first four wires off of the bundle

and connect them according to the picture. The colors do not matter.

Wiring the Weather Station

Please note: there are versions of the OLED display with swapped GND and VCC pins.

Becareful to connect them according to the printed labels, not (necessarily) this diagram!

As mentioned earlier, there exists a little confusion about the pin names. The Arduino IDE

uses the GPIO number given by the chip. The NodeMCU team who designed the board

NodeMCU Pin OLED Display Pin

3V3 VCC

GND GND

D3 SDA

D4 SCL

changed the pin naming for their LUA firmware. If you are programming a NodeMCU module

you can use the printed D# names. If you use a generic ESP8266 module then you have to

use the corresponding GPIO numbers. Here is a table of the mapping:

The NodeMCU Index is the name on the board, whereas the ESP8266 Internal column is the

one you use in the Arduino IDE code: e.g. D5 on the board is pin GPIO14 in C/C++.

NodeMCU Index ESP8266 Internal NodeMCU Index ESP8266 Internal

D0 GPIO16 D7 GPIO13

D1 GPIO5 D8 GPIO5

D2 GPIO4 D9 GPIO3

D3 GPIO0 D10 GPIO1

D4 GPIO2 D11 GPIO9

D5 GPIO14 D12 GPIO10

D6 GPIO12

F. First Run

Now we’re all set to run the WeatherStation software for the first time. Click on the Upload

arrow and wait until the compilation and the transfer have ended. Now you should see the

OLED display lighting up and displaying a WiFi icon. The module should now be trying to

acquire access to the wireless network you have defined earlier.

This is just the beginning. In the next chapter I’ll give you some ideas of what else you can

build with the WeatherStation hardware.

G. Summary

If everything went well you now have a working ESP8266 WeatherStation. Congratulations!

Let’s look back what we did in this chapter:

⚫ We used the WeatherStation example and created a working copy for us. All changes

will be applied to the copy, not the original example. If you accidentally make your code

unusable you can always go back to the example and start with a fresh copy.

⚫ We installed several libraries by using the Arduino IDE Library Manager. Libraries help us

to reuse code or binaries in many places without using barely maintainable copy/paste

code.

⚫ We created an API key from OpenWeatherMap. Every time we call the

OpenWeatherMap API to update weather data we will send this key along so that

OpenWeatherMap knows who we are. Many service providers use a similar scheme

to control and limit usage of their services.

⚫ We changed a few lines in the code to configure the WiFi settings, update interval, display

pins, timezone and the API key for OpenWeatherMap.

⚫ We connected the OLED display and the ESP8266 and uploaded the firmware.

6. The WeatherStation Code Explained

In this chapter we will have a look at the building blocks of the WeatherStation. This project

is a relatively complex piece of code and I hope to improve this chapter over time with new

details.

A. The JSON Streaming Parser

You might not know it but the most important puzzle piece for the WeatherStation project is

a thing called a streaming parser. What is a streaming parser? You are most certainly using

parsers every day. A parser is a piece of code that analyses an input (text, document) by

reading in its content. To do that the parser has knowledge about the structure of the text,

sometimes called a syntax. The syntax is like the grammar of your natural language. A web

browser you are using to read news uses an HTML parser to understand the tags that are

downloaded from the webserver and then put into a visualization with formatted text, pictures

and links.

So now that we roughly understand what a parser is the next question would be what is a

streaming parser? With a modern smartphone or desktop computer we often don’t need

streaming parsers anymore, we use document object model parsers (DOM) parsers instead.

A DOM parser creates a tree-like structure of the document it parses, keeps this structure in

memory and makes it available for the code that does something meaningful with it. DOM

parsers are very easy to use, fast and convenient. But this convenience comes at the price of

memory requirements. The DOM parser needs a lot of memory, since it keeps the whole

document in memory until it is no longer used. If you have a lot of RAM and your documents

are not that big this is perfectly fine. But if the documents are big compared to the available

(heap) memory you might run into a serious problem.

Imagine the parser to be something like a water meter and we are comparing now two

different types of meters. A water meter which works like a DOM parser needs a bucket and

measures the amount of water by filling the bucket and then measuring the weight of the

water in the bucket. If there is a lot of water then the bucket must be big. A water meter which

works like a streaming parser measures the water while it flows through and doesn’t care what

happens to the water afterwards. The bucket in this analogy is the heap or working memory

of your microcontroller, the water is the stream of bits and bytes that you receive, either from

the file system or from a remote server. And the parser does not just measure the amount of

bits and bytes but also tries to understand the content. The streaming parser doesn’t care

how big the document (or the amount of water) is, it just takes out what it needs from the

stream. Streaming parsers are also referred to as event-based parsers since they react to

certain events in the data stream. DOM parsers are referred to as tree-based parsers since

they build a full representation of the document in the tree-like structure. In an HTML tree

the html element would be the root of the tree, and the body tag a fork in that tree.

B. The Grammar

The following image describes the grammar of a valid JSON object in a very concise way.

It means that a JSON object knows three basic types:

⚫ object

⚫ array and

⚫ value

JSON grammar

Objects always start and end with curly brackets. They can be either empty (line to the top)

or contain string/value pairs, separated by a colon. These pairs can be repeated by adding a

comma between them. Arrays start and end with square brackets. They can be either empty

or contain a value. At this point we don’t know yet what a value is. Values in an array can be

repeated and must be separated by a comma. Values were already used for the two previous

definitions and here lies the power of this kind of grammar: because a value can contain a

simple text, a number, an object (yes, the object we defined before!!!), an array (also defined

before), booleans or a null value.

This is so powerful because we are reusing the definitions and we are nesting them within

each other: an object can contain a value; a value can contain an array or an object. And

finally, an array can contain a value, repeatedly! Isn’t this beautiful?

C. The JSON Streaming Parser Library

Why would we want to use a streaming parser on the ESP8266? Embedded devices usually

have very limited resources available. One scarce resource is the heap memory. Many of the

REST APIs I am using in my projects provide big response objects, but we are usually just

interested in a small fraction of it. As mentioned earlier, a tree-based parser would load the

whole document into memory and make it available once the document stream has ended.

And this would just crash the ESP8266 pretty quickly; it does not have the resources to keep

200kb on the heap.

This made me port a PHP JSON parser over to C++ and make it available as a library, mostly

to be used in my own projects. Let’s have a look at the header file of the JsonListener:

1 class JsonListener {

2 public:

3 virtual void whitespace(char c) = 0;

4 virtual void startDocument() = 0;

5 virtual void key(String key) = 0;

6 virtual void value(String value) = 0;

7 virtual void endArray() = 0;

8 virtual void endObject() = 0;

9 virtual void endDocument() = 0;

10 virtual void startArray() = 0;

11 virtual void startObject() = 0;

12 };

The methods here are callback methods which will get invoked if the respective event

happens while parsing the document. Let’s start with an example. For the JSON object {“name”:

“Eichhorn”} we get the following invocations:

⚫ startDocument(): we start receiving a json document

⚫ startObject(): the json object starts with “{“

⚫ key(“name”): the parser detected a key object which contains “name”

⚫ value(“Eichhorn”): the parser detected a value containing “Eichhorn”

⚫ endObject(): the object ends with “}”

⚫ endDocument(): the stream of data ends and so does the document

I often just implement (AKA “write code”) for the key() and the value() methods. In the key()

method I store the value of the key parameter. Then later in the value() method I check what

the last key was I had seen and then I store the value in the appropriate variable. For the

example from before I would do

1 void ExampleListener::key(String key) {

2 currentKey_ = key;

3 }

4

5 void ExampleListener::value(String key) {

6 if (currentKey_ == "name") {

7 name_ = value;

8 } else if (currentKey_ == "city") {

9 city_ = value;

10 }

11 }

In the stream of the object {“name”: “Eichhorn”} we will first get a call to the method key() with

the value “name” which we store in currentKey_. Next the parser will detect a value and call

our value() method with the value “Eichhorn”. The parser can now make the connection (or

create a context) that after the key “name” the value “Eichhorn” should be stored in the

member variable name_.

D. Conclusion

For a document or object of the size we had in the example a streaming parser is usually an

extreme overkill. It is complicated to use, requires you to write a lot of code and is memory-

wise probably even worse than a tree parser. It is only recommended to implement a

streaming parser if you have big objects or if you just don’t know how big your object might

be. In those cases a streaming parser will be a good friend, since it only requires memory for

the objects you actually want to use from the whole big document. You can find my library

here: https://github.com/squix78/json-streamingparser

https://github.com/squix78/json-streamingparser

7. Collecting and Displaying Local Data

So far we have created a device which connects to the internet and uses an API to fetch

weather data. But this is not really an Internet-of-Things application; after all we are just

displaying data. In this chapter, we will change that.

A. The Climate Node Setup

This project will enable you to collect humidity and temperature in one room of your house

or apartment and display the values in another room on the WeatherStation. In order to do

so you will need additional hardware which is not included in the basic WeatherStation Starter

Kit:

⚫ An additional ESP8266 module, ideally a NodeMCU

⚫ A DHT11 or DHT22 humidity and temperature breakout module

I will call this combo “The Climate Node”. Now use the female-to-female jumpers to connect

them like this:

Wiring for the Climate Node

B. Thingspeak Setup

Thingspeak is a free cloud service which allows you to easily post (sensor) data, to visualize it

and to retrieve it again using simple HTTP methods. I’d like to point out that you could also

use OpenWeatherMap to store your climate data and it probably would be very easy to

do as well. But I believe that for education purposes Thingspeak permits more degrees of

freedom. After all you could also send readouts from a motion sensor and visualize this

information on a chart. Thingspeak has some nice additional features which lets you

program webhooks to trigger a push notification on your cell phone, etc.

So first of all you have to sign up for a (free) account on Thingspeak. Go to

https://thingspeak.com/users/sign_up and create the account. After you completed that

process, log in to your new account and go to My Channels:

Navigate to My Channel

Then you click on the New Channel button, and fill out the form:

Fill out the New Channel Form

Explanation: The name just helps you to recognize your channel among many others that you

might create over time. The important parts are the field names. These names will later show

up in the chart and with this you are telling Thingspeak that the value you send later with the

field1 attribute should be displayed as “Temperature”.

Now navigate to the API Keys tab and note the two generated keys:

https://thingspeak.com/users/sign_up

Thingspeak API keys

The first one will allow you to write to this channel in Thingspeak, and the second one will

allow you to read from it. Treat them as secrets and with care. Others might be able to spam

your channel or to “steal” your data. We will use these keys soon enough… Also note the

channel ID on top of the screen, in my case 76642.

C. Programming the Climate Node

Now we have all the ingredients to post the climate data to Thingspeak. We just have to

program the ESP8266 accordingly. Go to: https://github.com/supprot/ArduCAM_esp8266-

dht-thingspeak-logger.git and download the code as a Zip file (or optionally do a GitHub

checkout).

Now adapt the settings to your needs: In particular the Wifi settings and the Thingspeak API

key have to be updated. Take the Write API key from the previous step. For testing you might

also play with the update interval which is a number in seconds. Please be aware that the

minimum update interval in Thingspeak is about 15 seconds. Pick a smaller interval and your

updates will be ignored. Now flash your program to the Node MCU and your Climate Node

should start logging. To check the results you can go back to Thingspeak and look at the

charts:

The Charts of your Climate Node

https://github.com/supprot/ArduCAM_esp8266-dht-thingspeak-logger.git
https://github.com/supprot/ArduCAM_esp8266-dht-thingspeak-logger.git

8. More Projects

In the last chapters, you successfully set up the development environment to program the

ESP8266 and got your first Internet-of-Things device running. While this chapter concludes

this Getting Started Guide I hope it is just the beginning of many interesting IoT projects you

will build.

A. The ESP8266 PlaneSpotter

The ESP8266 PlaneSpotter is an additional project that you can build with the same hardware

you used for the WeatherStation. After entering your coordinates it displays information on

airplanes which enter the airspace defined by your parameters. I built this fun project because

I see airplanes starting and landing from the nearby airport of Zurich. Since starting

FlightRadar24 on my iPhone is not nearly as nerdy as building a dedicated device I went to

work.

The ESP8266 PlaneSpotter in Action

The PlaneSpotter uses the currently free API of adsbexchange.com to fetch information on

airplanes close to the given coordinates every 30 seconds. Adsbexchange gets its data from

hundreds of lowcost repurposed DVB-T dongles which receive the ADS-B signal transmitted

by aircraft. Since data coverage in my area was not so good at the time I built my own receiver

with a Raspberry Pi and a USD $10 USB TV dongle.

To build this project you can use the PlaneSpotterDemo which comes with the WeatherStation

library: File > Examples > ESP8266 Weather Station > PlaneSpotterDemo

If you want to try out the Platformio IDE there is also a separate project on Github:

⚫ Blog Post: http://blog.squix.org/2016/07/esp8266-based-plane-spotter-how-to.html

⚫ Code: https://github.com/squix78/esp8266-plane-spotter

http://blog.squix.org/2016/07/esp8266-based-plane-spotter-how-to.html
https://github.com/squix78/esp8266-plane-spotter

B. The ESP8266 WorldClock

The WorldClock is yet another simple project which you can build with the WeatherStation

hardware - and you already have a demo installed in your Arduino editor. Just go to File >

Examples > ESP8266 Weather Station > WorldClockDemo

The ESP8266 World Clock

