# TECHNICAL DATA

## MQ-8 GAS SENSOR

#### **FEATURES**

- \* High sensitivity to Hydrogen (H<sub>2</sub>)
- \* Small sensitivity to alcohol, LPG, cooking fumes
- \* Stable and long life

#### APPLICATION

They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of Hydrogen (H<sub>2</sub>), avoid the noise of alcohol and cooking fumes, LPG,CO.

#### SPECIFICATIONS

| A. Standard v | vork condition |
|---------------|----------------|
|---------------|----------------|

| Symbol         | Parameter name      | Technical condition | Remarks  |
|----------------|---------------------|---------------------|----------|
| Vc             | Circuit voltage     | 5V±0.1              | AC OR DC |
| V <sub>H</sub> | Heating voltage     | 5V±0.1              | ACOR DC  |
| PL             | Load resistance     | 10K Ω               |          |
| R <sub>H</sub> | Heater resistance   | 31±5%               | Room Tem |
| P <sub>H</sub> | Heating consumption | less than800mW      |          |

#### B. Environment condition

| Symbol         | Parameter name       | Technical condition                  | Remarks          |
|----------------|----------------------|--------------------------------------|------------------|
| Tao            | Using Tem            | -10°C-50°C                           |                  |
| Tas            | Storage Tem          | -20°C-70°C                           |                  |
| R <sub>H</sub> | Related humidity     | less than 95%Rh                      |                  |
| O <sub>2</sub> | Oxygen concentration | 21%(standard condition)Oxygen        | minimum value is |
|                |                      | concentration can affect sensitivity | over 2%          |

### C. Sensitivity characteristic

| Symbol                                   | Parameter name                   | Technical parameter                        | Ramark 2                                          |
|------------------------------------------|----------------------------------|--------------------------------------------|---------------------------------------------------|
| Rs                                       | Sensing Resistance               | 10K Ω - 60K Ω<br>(1000ppm H <sub>2</sub> ) | Detecting concentration<br>scope:<br>100-10000ppm |
| α<br>(1000ppm/<br>500ppmH <sub>2</sub> ) | Concentration slope rate         | ≤0.6                                       | Hydrogen (H <sub>2</sub> )                        |
| Standard<br>detecting<br>condition       | Temp: 20℃±2℃<br>Humidity: 65%±5% | Vc:5V±0.1<br>Vh: 5V±0.1                    |                                                   |
| Preheat time                             | Over 24 h                        | iour                                       |                                                   |

D. Structure and configuration, basic measuring circuit





Structure and configuration of MQ-8 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a made by plastic and stainless steel net. The heater provides necessary work conditions for work of crust sensitive components. The enveloped MQ-8 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

MQ-8

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve



Fig.2 sensitivity characteristics of the MQ-8





Fig.4 is shows the typical dependence of the MQ-8 on temperature and humidity. Ro: sensor resistance at 1000ppm of H<sub>2</sub> in air at 33%RH and 20 degree. Rs: sensor resistance at 1000ppm of H<sub>2</sub> in air

at different temperatures and humidities.

#### SENSITVITY ADJUSTMENT

Resistance value of MQ-8 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 1000ppm H<sub>2</sub> concentration in air and use value of Load resistance ( $R_I$ ) about 10 K  $\Omega$  (5K  $\Omega$  to 33 K  $\Omega$ ).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.